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Credit: Marco Cerezo



Quantum Convolutional Neural Network (QCNN)

Cong et al, Quantum Convolutional Neural Network, 2018, arXiv:1810.03787
Grant et al., Hierarchical quantum classifiers, 2018, arXiv:1804.03680
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Applications

Phase detection Quantum error correction

1D Haldane Chain



Barren plateau for the QCNN: first intuition

Previous work: the hardware-efficient ansatz does not have barren plateau if:
1. We have a local-cost function
2. We have a logarithmic number of layers

Intuition: QCNN won’t have any barren plateau because of the logarithmic number of layers

Problem: the QCNN is not the hardware-efficient ansatz => we have to do some work

Cerezo et al, Cost-Function-Dependent Barren Plateaus in Shallow Quantum 
Neural Networks, arXiv:2001.00550



How to study this architecture?

First simplification: modify the circuit to avoid conditional measurement between two blocks



How to study this architecture?

Second simplification: remove the conditional measurements (doesn’t change the statistics)

Reason: property of the Haar measure:



How to study this architecture?

Third simplification: we decorrelate the unitaries

Reason: this should give a lower bound on the correlated version (mix of analytical and 
empirical evidence)
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How to study this architecture?

Fourth simplification: linear cost-function with respect to the input state
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Example: classification (0 vs 1)



Result

Result: with the hypotheses described above, the variance of the 
QCNN has at worst an inverse polynomial scaling, i.e. it is trainable

Number of layers

Number of qubits
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Proof: Graph Recursion Integration Method (GRIM)

Each block follows a 
2-design

Gradient w.r.t this block

Goal: obtain the variance of the gradient



Proof: Graph Recursion Integration Method (GRIM)

Each block follows a 
2-design

Gradient w.r.t this block

Problem: way too many terms to integrate



Proof: Graph Recursion Integration Method (GRIM)

Idea: causal cone + module decomposition



Proof: Graph Recursion Integration Method (GRIM)

Method: keep track of all the integrals in a graph



Proof: Graph Recursion Integration Method (GRIM)

Result: variance = sum over all paths of length log(n) in the graph



Numerical experiments

Simulator: Cirq + TensorFlow Quantum

Scaling of the QCNN gradient



Future work

● How to study correlated architectures systematically?

● How to study non-linear cost-functions? (e.g. mean-squared error) 

● Can we deduce the trainability of MERA from our result?

● Can we use GRIM to analyze other architectures

● How useful are QCNNs in practice?

Thanks for your attention


