
Quantum Algorithms for Solving Partial Differential Equations

Arthur Pesah1

1Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
(Dated: March 2020)

Partial Differential Equations (PDEs) are ubiquitous in all scientific fields, and being able to solve
them efficiently could unlock significant progress in fields such as aerodynamics, plasma physics and
finance. In this case study, I will introduce the different methods that have been proposed in the
literature to solve PDEs on a quantum computer, and classify them into a coherent framework. I
will then show how to analyze the complexity of those algorithms, and discuss the main challenges
and open problems in the field.

I. INTRODUCTION

Most scientific phenomena can be modelled by the evo-
lution of a given quantity through space and time, or in
other words, a partial differential equation (PDE). While
PDEs can be found everywhere in nature—from plasma
physics and fluid mechanics to finance and biology—they
are notoriously hard to solve. Therefore, being able to
solve them more efficiently than all known classical al-
gorithms, using a quantum computer, could significantly
accelerate scientific progress. However, while many quan-
tum algorithms for solving PDEs have been proposed in
the literature, it is not yet clear what type of speed-up
could be achieved for practical problems. For instance,
is an exponential speed-up possible?

To answer this question, we first need to understand
the problem being solved by quantum algorithms. In
Figure 1, we show the different steps of most quantum
PDE solvers: discretization of the PDE, mapping to
Schrödinger’s equation or to a linear system, execution
of either Hamiltonian simulation or the HHL algorithm,
and finally measurement. A common feature of those al-
gorithms is that the solution is always stored as the am-
plitudes of a quantum state. Since extracting the com-
plete solution with quantum state tomography would be
impractical, the problem of "solving the PDE" is trans-
formed into the more restricted problem of "obtaining a
functional of the solution with an error less than ε".

In this report, we will review the main quantum algo-
rithms that can be used to solve PDEs as well as their
complexity, with the goal of determining what type of
speed-up can be achieved when compared to classical al-
gorithms. After having analyzed the main primitives of
quantum PDE solvers, we will discuss each of the steps
presented in Figure 1 in more details, by showing how
each step can be performed in practice. We will then an-
alyze the overall complexity of those algorithm and de-
duce some insights on the power of quantum algorithms
for solving PDEs. Finally, we will discuss challenges and
open problems in the field, suggesting some steps for fu-
ture research.

Measurement

The solution is now stored as a

quantum state. Obtain part of the
solution by performing

measurements

HHL

Solve the problem using
the Harrow, Hassidim,
Lloyd (HHL) algorithm

Hamiltonian
Simulation

Solve the problem with
Hamiltonian simulation

techniques

Linear system

Solving my PDE comes
down to solving a linear

system of equations

Schrödinger’s
equation

My PDE can be turned into
Schrödinger’s equation

Mapping

Transform your PDE to have it in

one of the following forms

Discretization

Discretize space (using a lattice), such

that f(x,t) becomes a vector f(t)

a)

b)

c)

d)

FIG. 1. Common steps to solve a partial differential equation
with a quantum computer.

II. BACKGROUND

Most quantum algorithms for PDEs rely on one of
those two quantum primitives: Hamiltonian simulation
and the quantum linear system solver. We will review
those two important quantum algorithms in this section.

A. Hamiltonian simulation

The original motivation for building a quantum com-
puter was to solve Schrödinger’s equation. Since then, a
lot of progress has been made in determining what quan-

2

tum systems can be simulated, how and which speed-up
can be obtained. The goal of Hamiltonian simulation is
to solve

dψ

dt
= iHψ (1)

where H is a Hermitian N × N matrix, by efficiently
implementing the unitary evolution

|ψ〉 = e−iHt |ψ0〉 (2)

using a universal gate set. A first solution to this problem
was given by Lloyd in 1996 [1], by considering Hamilto-
nians that can be written as a sum of local Hamiltonians:

H =
∑
k

Hk (3)

In this case, the Trotter formula gives the following de-
composition for short-time simulations:

e−iHt ≈ e−iHnt . . . e−iH1t (4)

where each unitary e−iHkt can in principle be efficiently
implemented.

Hamiltonian simulation has later been generalized to
sparse matrices [2] and Hamiltonians that can be written
as a linear combination of unitaries [3]. A more gen-
eral framework—called qubitization—led to an optimal
complexity of O(t + log(1/ε) + log(N)) when H can be
block-encoded (which includes the d-sparse and the linear
combination of unitary models) [4].

The logarithmic scaling of those quantum algorithms
in the error and the size of the matrix is an exponen-
tial improvement over all known classical methods. For
this reason, generalizing Hamiltonian simulation to non-
Hermitian matrices has been seen as an attractive ap-
proach to solve PDEs on a quantum computer, as we
will see in Section III B.

B. Quantum linear equation solver

Introduced in 2008, the Harrow, Hassidim, Lloyd
(HHL) algorithm [5] can solve systems of linear equations
of the form

Ax = b (5)

in a time logarithmic in the size N of the matrix. How-
ever, the solution is stored in the amplitudes of a quan-
tum state,

|x〉 =
∑
i

xi |i〉 (6)

and is therefore not classically accessible without per-
forming a (costly) quantum state tomography. HHL is
therefore only useful when used as a primitive for other
algorithms, or when only a functional of the solution is
needed. Other major caveats of this algorithm include:

• It requires the state |b〉 to be prepared on the quan-
tum computer, which can only be done efficiently
for some specific classes of states (e.g. log-concave
classical distributions [6])

• While the matrix A is not required to be Hermitian,
it must be sparse and well-conditonned

• If A is low-ranked, it can be dequantized, meaning
that a classical algorithm has been discovered that
can solve the same problem with a polynomial over-
head [7–9]. However, it can still be useful if only a
polynomial speed-up is sought.

While those caveats will limit the generality of quantum
PDE solvers, HHL can still be successfully applied to a
large class of problems (e.g. when the initial state is
log-concave and the solution is only needed in a small
region).
The complexity of the original HHL algorithm was

O(κ2s2 poly(log(N), 1/ε)) (7)

with κ the condition number and s the sparsity. It has
been significantly reduced in the subsequent years, with
an improvement in the condition number [10], the spar-
sity, and the precision [11]. A quantum algorithm based
quantum signal processing—a novel technique that has
improved and unified several algorithms for matrix arith-
metic [12]—has led to an almost-optimal complexity of
[13]:

O(κs log(N) log(1/ε)) (8)

We can now study how those primitives can be applied
to solve partial differential equations.

III. SOLVING A PDE WITH A QUANTUM
COMPUTER

A. Discretization

Let us consider a partial differential equation that
solves for a function f(x, t), where x is a d-dimensional
vector. In order to store and manipulate the solution
of the PDE on a quantum device, the first step is often
to discretize space: we create a d-dimensional lattice and
write fi(t) := f(xi, t) for the node located at the position
xi in the lattice. Therefore, the problem reduces to solv-
ing an ordinary differential equation (ODE) in f(t) and
most quantum algorithms to solve ODEs can be applied
to our new problem. However, when solving PDEs, the
error introduced during the discretization process needs
to be taken into account in the complexity analysis. It
changes the nature of speed-up that can be obtained, by
introducing a dependence between the precision of the
solution and the dimension of f , as we will see in Section
IV.

3

While discretization is a necessary step for all the quan-
tum algorithms based on the discrete model of quantum
computing, continuous-variable quantum computers have
the ability to alleviate that step, by directly storing func-
tions of the form f(x, t) as infinite dimensional quantum
states, as shown in [14].

B. Mapping

1. Mapping to Schrodinger’s equation

One of the first approaches proposed to solve ODEs—
and by extension PDEs—was to map the equation to a
Hamiltonian simulation problem [15, 16]. However, while
solving a problem of the form

ẋ = Ax (9)

when A is anti-hermitian (i.e. when iA is hermitian) can
be handled directly with Hamiltonian simulation meth-
ods, more general ODEs and PDEs require more work to
be put into this form. I will highlight here three generic
techniques that have been proposed in the literature to
solve this problem. More specialized mapping have been
proposed, tailored to specific equations (e.g. in plasma
physics [17, 18]), but we will not discuss those here.

The first technique, proposed in [15], uses the encoding

H =
(

0 iA†

−iA 0

)
= iA† ⊗ |0〉〈1| − iA⊗ |1〉〈0| (10)

of the general matrix A into a Hermitian matrix H.
Then, using a first-order approximation of the unitary
evolution, applied on an initial state |x0〉 |0〉, gives:

e−iHε |x0〉 |0〉 = |x0〉 |0〉+ εA |x0〉 |1〉+ . . . (11)

Therefore, post-selecting on |1〉 gives us the state εA |x0〉,
which can be used when solving Eq. (9) by Euler’s
method:

|x(t+ ε)〉 = |x(t)〉+ εA |x(t)〉 (12)

Given an efficient method to prepare the initial state
|x0〉, the algorithm producing |x(t = mε)〉 has a scaling
of O

((1
ε2

)m log(N)
)
(where N is the size of the matrix

and ε the error). As noted in [15], the exponential scaling
with time is a major caveat of this method. However, it
has the advantage to easily generalize to non-linear ODEs
of the form

ẋ = f(x) (13)

where f is a polynomial of degree p, by applying the
algorithm to p copies of |x〉.
A second technique was proposed in Section II of [16],

as a short detour before considering HHL-based methods.

The idea is to decompose A as a sum of a Hermitian and
a non-Hermitian matrix:

A = AH +AaH (14)

Using the Trotter formula, we get for short-time ε:

x(ε) = eAεx0 ≈ eAHεeAaHεx0 (15)

The author then notes that AaH can be efficiently simu-
lated using Hamiltonian simulation, and AH can be sim-
ulated using a combination of Hamiltonian simulation
and phase estimation (à la HHL). However, the author
quickly discard this method, observing that it would have
an exponential scaling with time if [AH , AaH] 6= 0. This
approach was developed further in [19] in the context of
the Black-Scholes PDE

∂f

∂t
= af + b

∂f

∂x
− c∂

2f

∂x2 (16)

This equation can be rewritten as

∂f

∂t
= Af (17)

where A = ibp̂+
(
aI + cp̂2), with p̂ = −i∂x. We can then

decompose A as before as A = AH +AaH , where

AaH = ibp̂, AH = aI + cp̂2 (18)

Since [AH , AaH] = 0, the long-time evolution can be sim-
ulated, circumventing the exponential scaling discussed
previously. Moreover, the authors propose a new algo-
rithm to simulate the Hermitian part of A, which does
not involve any costly phase estimation primitive. Ob-
serving that Ô(t) = eAHt is Hermitian itself, it can be
embedded as a unitary operator using a technique called
unitary dilation:

U(t) =
(

Ô
√

1− Ô2√
1− Ô2 −Ô

)
(19)

Applying this unitary to the initial state gives:

U(t) |f0〉 |0〉 = Ô |f0〉 |0〉+
√

1− Ô2 |f0〉 |1〉 (20)

The desired state Ô |f0〉 can then be obtained by post-
selecting the |0〉 state on the auxiliary qubit.
The third technique I would like to discuss was pro-

posed in [20] to solve the wave equation

∂2f

∂t2
= −∆f (21)

where ∆ is the d-dimensional Laplacian. It can be writ-
ten after discretization as:

d2f

dt2
= −Lf (22)

4

where L is the discretized Laplacian. The authors of
[20] then observe that the derivative of the Schrödinger’s
equation can be written as

d2φ

dt2
= −H2φ (23)

and therefore any solution of Schrödinger’s equation will
also be solution of Eq. (23). Since L cannot always be
decomposed as H2 with H hermitian, we use the encod-
ing

H =
(

0 B
B† 0

)
(24)

such that

H2 =
(
BB† 0

0 B†B

)
(25)

Therefore, it is sufficient to find a decomposition L =
BB† to be able to simulate the wave equation using
Hamiltonian simulation. For the Laplacian matrix, the
matrix B can be obtained analytically as it corresponds
to the signed incidence matrix, a matrix which played an
important role in the theory of graph Laplacians.

While Hamiltonian simulation is a natural and effi-
cient way to solve many classes of differential equations—
first-order PDEs with commuting Hermitian and anti-
Hermitian parts, second-order PDEs such as the wave
equation, etc.—, not all PDEs can be written as a
Schrödinger’s equation. Mapping our PDE to a linear
system before solving it with variants of HHL is a more
general technique that can be applied in a variety of con-
texts, as we will now see.

2. Mapping to linear system

The idea to use HHL for solving PDEs comes from
the observation that most classical algorithms for PDEs
involve matrix inversion, from the finite-difference and
finite-element methods to spectral methods and direct
inversion of non-homogeneous problems. As for Hamil-
tonian simulation, I will discuss here three classes of tech-
niques that are representative of this mapping method.

Our first technique, introduced in [16], is called the
multi-step method as it solves the PDE for all times in
a single state. Let us consider a discretized PDE of the
form:

ẋ = Ax + b (26)

The simplest way to obtain a linear system is to consider
Euler’s method, i.e. to discretize time to the first order:

x(tj+1)− x(tj)
h

≈ Ax(tj) + b (27)

Writing xj = x(tj), we get the following system for a
simple example where j ≤ 2: I 0 0

−(I +Ah) I 0
0 −(I +Ah) I

x0
x1
x2

 =

xin
bh
bh

 (28)

We can then apply HHL and obtain the desired solution
for all times within a state

|x〉 =
Nt∑
j=0
|tj〉 |xj〉 (29)

This method has for instance been applied and rigorously
analyzed for the heat equation [21]. While this technique
is the most straight-forward way to encode a PDE into a
linear system, it has been shown that it leads to a poor
scaling with the precision—O(poly(1/ε))—even when us-
ing improved versions of the HHL algorithm [22]. To
circumvent this problem, the authors of [22] introduce a
variation of this approach, where Eq. (27) is replaced by
the Taylor development in Ah of

xj+1 = eAhxj +
(
eAh − I

)
A−1b (30)

leading to a high-precision algorithm with a complexity
of O(log(1/ε)) with respect to the error.
A second set of techniques that have been developed

in the recent years relies on spectral methods. Instead
of encoding the state in the time-domain as we saw with
the multi-step method, [23] proposes to encode it in the
frequency domain (Fourier basis), leading to a different
linear system. As emphasized in their paper, this method
has the advantage to easily generalize to time-dependent
ODEs of the form

ẋ = A(t)x(t) + b(t) (31)

An improved version of this algorithm adapted to elliptic
equations (such as the Poisson equation) gives a complex-
ity of O(log(1/ε)) with respect to the error [24], similarly
to the improved multi-step method.

Finally, our last technique concerns non-homogeneous
PDEs, such as the non-homogeneous Poisson equation in
d dimensions:

−∆f = u (32)

where ∆ is the d-dimensional Laplacian. It is possible to
directly solve the infinite-dimensional system of Eq. (32)
using a continuous-variable quantum computer with an
infinite-dimensional version of HHL [14]. However, for
discrete quantum computers, we can consider the dis-
cretized version of Eq. (32):

−Lf = u (33)

which is a sparse linear system that can efficiently be
solved by HHL (with a runtime polynomial in 1/ε) [25].
The finite-element method can also be used to solve the

5

Poisson equation: the discretized Laplacian in Eq. (33) is
simply replaced by the matrix obtained when consider-
ing the variational (or integral) formulation of the Pois-
son equation [26] . However, only the second technique
discussed here has been proven to achieve a logarithmic
complexity with the precision for the Poisson equation.

3. Other types of mapping

While Hamiltonian simulation and HHL are the main
techniques to solve PDEs on a quantum computers, other
types of algorithms can be found in the literature. For
instance, one of the first quantum solver proposed in
the literature was based on Grover’s search, achieving
a quadratic speed-up over some classical methods [27].
Building on this method, and particularly amplitude
estimation—a generalization of Grover’s search—the au-
thors of [28] proposed an algorithm to solve Navier-Stokes
equations. Amplitude estimation was also considered as
one of the methods to solve the heat equation in [21], us-
ing it to improve the random walk algorithm and leading
to the best polynomial speed-up for this PDE. Finally,
a variational algorithm has been proposed to solve non-
linear PDEs by mapping the solution to the ground-state
of well-designed Hamiltonian [29].

C. Initial state preparation

All the algorithms described in the previous sections
require the preparation of a state |b〉, whether it be the
initial state of the PDE, an inhomogeneous term, or a
combination of both as in Eq. (28).

General states cannot be prepared efficiently on a
quantum computer, even approximately. However, in
some special cases, efficient state preparation algorithm
can be constructed. An example is when the state corre-
sponds to a classical distribution

|ψ〉 =
∑
i

√
pi |i〉 (34)

such that there exists an efficient classical algorithm
that can integrate/sample from p [6]. For instance, log-
concave distributions—for which ∂2 log(p(x))

∂x2 < 0, such as
normal and exponential distributions—can be shown to
be efficiently integrable. Examples of algorithms that
can be used to prepare such states are the uniformly-
controlled rotations [30] and the quantum Generative Ad-
versarial Network [31] .

While this establishes an important constraint on
quantum PDE solvers, it is often possible to find physi-
cally relevant initial states that are efficiently preparable.
For instance, [17] shows that a Maxwellian distribution
at rest can be efficiently implemented and used to solve
the Vlasov equation. In finance, one can show that the
initial condition for the pricing problem of a European

put option is log-concave, and can therefore efficiently be
used when solving the Black-Scholes PDE [19].

D. Measurement

Finally, the last step of any quantum PDE algorithm
is to perform measurements to obtain a function of the
solution, since the global solution cannot be easily ex-
tracted in general. There are many functions of a state
that can be extracted efficiently, such as the inner prod-
uct with another state (using the so-called SWAP test) or
a small set of amplitudes (using amplitude estimation).
For instance, [18] enumerates a few quantities of interest
that can be extracted from the solution of several plasma
equations, e.g. the total energy of a wave or the power
dissipated in a finite volume.
For elliptic equations (such as the Poisson equation),

long-range effects can play an important role. Therefore,
knowing the value of the solution in a small region of in-
terest often requires solving it in a larger region that in-
cludes the boundary conditions. Extracting the solution
in the small region could therefore be both interesting
and not costly.
However, measuring any functional requires
O(poly(1/ε)) repetitions to obtain a precision ε, as
noted in the original HHL paper [5]. This cost is
unavoidable (under reasonable complexity assumptions)
and is therefore an important bottleneck in analyzing
the complexity of a quantum algorithm for PDEs, as we
will see in the next section.

IV. COMPLEXITY ANALYSIS

In this section, we will analyze the overall complex-
ity of the quantum algorithms discussed in the previous
section, with the goal of determining if an exponential
speed-up is possible. We consider the problem of solving
a general linear PDE with either Hamiltonian simulation
or HHL, and measuring a functional of the result at the
end.

A. Variables of interest

We analyze here a quantum algorithm that takes as
input a d-dimensional PDE (i.e. with d spatial variables)
and output an approximation of the functional B(f) of
the solution f , with an error ε. This solution is often
discretized in a lattice made of N nodes, leading to in-
version or simulation problems involving N×N -matrices.
Therefore, we can enumerate three variables that can be
used in the complexity analysis:

• ε: the error in the approximation

• d: the dimension of the PDE

6

• N : the number of nodes in the discretization

However, as observed in [25, 26], N and ε are related in
PDE problems: to reduce the error of a solution, increas-
ing the number of nodes in the discretization is necessary.
Therefore, it is possible to show for many equations that
achieving a discretization error less than ε requires to
take

N = O
(

poly
(

1
εd

))
(35)

where the degree of the polynomial depends on the order
of the discretization but is independent on d [21, 25, 26].
Therefore, our only remaining variables are ε and d, and
claims of exponential speed-up for PDE problems due to
log(N) factors (such as [19, 32]) need to be considered
carefully.

B. Analysis of the different components

As we have seen, a quantum algorithm for PDEs is
made of three important steps: initial state preparation,
quantum algorithm, and measurement. For log-concave
distributions, the initial state can be efficiently prepared,
i.e. in less than O(polylog(N)). While we have con-
sidered a large variety of quantum algorithms with dif-
ferent complexities, the most promising approaches re-
quired a number of step scaling as O(polylog(N, 1/ε))
(assuming that the sparsity and condition number scale
at most logarithmically with N and 1/ε). Finally, we
have seen that the measurement process cannot take less
than O(poly(1/ε)).
Adding all those costs, we end up with a total com-

plexity of

O(polylog(N, 1/ε) poly(1/ε))
= O(polylog(1/εd) poly(1/ε))
= O(poly(d, 1/ε))

(36)

Therefore, all the algorithms we have considered in this
case study will have complexity scaling at best polyno-
mially in d and 1/ε.

C. Is an exponential speed-up in solving PDEs
possible?

In order to determine if a quantum algorithm can
achieve an exponential speed-up, we need to compare
it to the best classical algorithms. In general, it seems
that most PDEs have a best classical solution scaling as
either O(poly(1/εd)) or O(poly(1/ε)). For instance, ran-
dom walks give the best complexity for the heat equation,
with a complexity scaling as O(1/ε2) [21]. On the other
hand, it can be shown that solving an elliptic PDE such
as the Poisson equation requires O(poly(1/εd) steps in

the worst-case, a phenomenon that is sometimes referred
to as the curse of dimensionality [33].
From those considerations, it seems that an exponen-

tial speed-up cannot be easily achieved with respect to
ε (for fixed d), while an exponential speed-up with re-
spect to the dimension has been shown in several cases
[14, 25, 26] and suggests a promising direction to solve
the curse of dimensionality using quantum computers.

V. DISCUSSION AND OPEN PROBLEMS

As we have seen throughout this case study, a large va-
riety of quantum algorithms have been proposed to solve
the three main types of PDEs—elliptic (Poisson), hyper-
bolic (wave) and parabolic (heat)—through the use of
clever mappings to existing quantum primitives. While
recent work has led to a large decrease in the over-
all complexity of those algorithms—building on the im-
provements of Hamiltonian simulation and HHL over the
years—the need to measure a functional at the end has
not been alleviated and will probably always make expo-
nential speed-ups in the precision impossible.
I can identify several open problems and directions for

future research:
1. What is the extent of the polynomial speed-up that

can be achieved with quantum PDE algorithms? In
particular, can we achieve a super-quadratic speed-
up in a real-world application? It has recently
been shown that quadratic speed-ups will proba-
bly not be practical for a long period [34], mak-
ing the discovery of super-quadratic speed-ups an
important research direction. Rigorous analyses of
polynomial speed-ups for end-to-end quantum PDE
solvers have only been performed in a small number
of cases (Poisson equation [26], heat equation [21],
and Black-Scholes SDE [35] for instance). Extend-
ing those analyses to more equations would help
to better understand the speed-ups achievable with
quantum algorithms.

2. Is an exponential speed-up in the dimension possi-
ble, and if so, in what settings? While some papers
have shown that such a speed-up is possible for the
Poisson equation [14, 26], those quantum algorithm
need to be compared to a broader class of classical
algorithms designed under the same assumptions.
If such a speed-up is indeed possible, what practical
problems will it allow to solve?

3. Can we use quantum algorithms to solve non-linear
PDEs? Recent papers have presented new methods
to solve non-linear ODEs efficiently, based either
on concatenating multiple copies of the states [29,
36] or on Carleman linearization [37]. However, as
the authors do not take into account the cost of
discretization, new analyses need to be performed
to see if the quantum speed-up shown for ODEs
generalizes to PDEs.

7

4. Solving first-order ODEs often comes down to im-
plementing imaginary-time evolution on the quan-
tum computer. Can we use the recent results in
simulating imaginary-time evolution [38, 39] to cre-
ate new quantum algorithms for PDEs/ODEs?

While the existing proposals to solve PDEs on a quan-

tum computer come with many caveats, the potentially
large polynomial speed-up of those algorithms as well
their ability to solve the curse of dimensionality makes
them promising candidates to solve real-world applica-
tions with a quantum computer, and a lot still remains
to be discovered about them.

[1] Seth Lloyd, “Universal quantum simulators,” Science ,
1073–1078 (1996).

[2] Dorit Aharonov and Amnon Ta-Shma, “Adiabatic quan-
tum state generation and statistical zero knowledge,” in
Proceedings of the thirty-fifth annual ACM symposium on
Theory of computing (2003) pp. 20–29.

[3] Dominic W Berry, Andrew M Childs, Richard Cleve,
Robin Kothari, and Rolando D Somma, “Simulating
hamiltonian dynamics with a truncated taylor series,”
Physical review letters 114, 090502 (2015).

[4] Guang Hao Low and Isaac L Chuang, “Hamiltonian sim-
ulation by qubitization,” Quantum 3, 163 (2019).

[5] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd,
“Quantum algorithm for linear systems of equations,”
Physical review letters 103, 150502 (2009).

[6] Lov Grover and Terry Rudolph, “Creating superpositions
that correspond to efficiently integrable probability dis-
tributions,” arXiv preprint quant-ph/0208112 (2002).

[7] Nai-Hui Chia, Han-Hsuan Lin, and Chunhao Wang,
“Quantum-inspired sublinear classical algorithms for
solving low-rank linear systems,” arXiv preprint
arXiv:1811.04852 (2018).

[8] András Gilyén, Seth Lloyd, and Ewin Tang, “Quantum-
inspired low-rank stochastic regression with logarith-
mic dependence on the dimension,” arXiv preprint
arXiv:1811.04909 (2018).

[9] Changpeng Shao and Ashley Montanaro, “Faster
quantum-inspired algorithms for solving linear systems,”
arXiv preprint arXiv:2103.10309 (2021).

[10] Andris Ambainis, “Variable time amplitude amplification
and quantum algorithms for linear algebra problems,”
in STACS’12 (29th Symposium on Theoretical Aspects of
Computer Science), Vol. 14 (LIPIcs, 2012) pp. 636–647.

[11] Andrew M Childs, Robin Kothari, and Rolando D
Somma, “Quantum linear systems algorithm with ex-
ponentially improved dependence on precision,” arXiv
preprint arXiv:1511.02306 83 (2015).

[12] John M. Martyn, Zane M. Rossi, Andrew K. Tan, and
Isaac L. Chuang, “A grand unification of quantum algo-
rithms,” arXiv preprint arXiv:2105.02859 (2021).

[13] Lin Lin and Yu Tong, “Optimal quantum eigenstate fil-
tering with application to solving quantum linear sys-
tems,” arXiv preprint arXiv:1910.14596 (2019).

[14] Juan Miguel Arrazola, Timjan Kalajdzievski, Christian
Weedbrook, and Seth Lloyd, “Quantum algorithm for
nonhomogeneous linear partial differential equations,”
Physical Review A 100, 032306 (2019).

[15] Sarah K Leyton and Tobias J Osborne, “A quantum al-
gorithm to solve nonlinear differential equations,” arXiv
preprint arXiv:0812.4423 (2008).

[16] Dominic W Berry, “High-order quantum algorithm for
solving linear differential equations,” Journal of Physics

A: Mathematical and Theoretical 47, 105301 (2014).
[17] Alexander Engel, Graeme Smith, and Scott E Parker,

“Quantum algorithm for the vlasov equation,” Physical
Review A 100, 062315 (2019).

[18] Ilya Y Dodin and Edward A Startsev, “On applications
of quantum computing to plasma simulations,” arXiv
preprint arXiv:2005.14369 (2020).

[19] Javier Gonzalez-Conde, Ángel Rodríguez-Rozas, Enrique
Solano, and Mikel Sanz, “Pricing financial deriva-
tives with exponential quantum speedup,” arXiv preprint
arXiv:2101.04023 (2021).

[20] Pedro CS Costa, Stephen Jordan, and Aaron Ostrander,
“Quantum algorithm for simulating the wave equation,”
Physical Review A 99, 012323 (2019).

[21] Noah Linden, Ashley Montanaro, and Changpeng Shao,
“Quantum vs. classical algorithms for solving the heat
equation,” arXiv preprint arXiv:2004.06516 (2020).

[22] Dominic W Berry, Andrew M Childs, Aaron Ostrander,
and Guoming Wang, “Quantum algorithm for linear dif-
ferential equations with exponentially improved depen-
dence on precision,” Communications in Mathematical
Physics 356, 1057–1081 (2017).

[23] Andrew M Childs and Jin-Peng Liu, “Quantum spectral
methods for differential equations,” Communications in
Mathematical Physics , 1–31 (2020).

[24] Andrew M Childs, Jin-Peng Liu, and Aaron Ostrander,
“High-precision quantum algorithms for partial differen-
tial equations,” arXiv preprint arXiv:2002.07868 (2020).

[25] Yudong Cao, Anargyros Papageorgiou, Iasonas Petras,
Joseph Traub, and Sabre Kais, “Quantum algorithm and
circuit design solving the poisson equation,” New Journal
of Physics 15, 013021 (2013).

[26] Ashley Montanaro and Sam Pallister, “Quantum algo-
rithms and the finite element method,” Physical Review
A 93, 032324 (2016).

[27] Bolesław Kacewicz, “Randomized and quantum algo-
rithms yield a speed-up for initial-value problems,” Jour-
nal of Complexity 20, 821–834 (2004).

[28] Frank Gaitan, “Finding flows of a navier–stokes fluid
through quantum computing,” npj Quantum Information
6, 1–6 (2020).

[29] Michael Lubasch, Jaewoo Joo, Pierre Moinier, Martin
Kiffner, and Dieter Jaksch, “Variational quantum algo-
rithms for nonlinear problems,” Physical Review A 101,
010301 (2020).

[30] Mikko Mottonen, Juha J Vartiainen, Ville Bergholm,
and Martti M Salomaa, “Transformation of quan-
tum states using uniformly controlled rotations,” arXiv
preprint quant-ph/0407010 (2004).

[31] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner,
“Quantum generative adversarial networks for learning
and loading random distributions,” npj Quantum Infor-

8

mation 5, 1–9 (2019).
[32] B David Clader, Bryan C Jacobs, and Chad R

Sprouse, “Preconditioned quantum linear system algo-
rithm,” Physical review letters 110, 250504 (2013).

[33] Arthur G Werschulz, The computational complexity of
differential and integral equations: An information-based
approach (Oxford University Press, Inc., 1991).

[34] Ryan Babbush, Jarrod R McClean, Michael Newman,
Craig Gidney, Sergio Boixo, and Hartmut Neven, “Focus
beyond quadratic speedups for error-corrected quantum
advantage,” PRX Quantum 2, 010103 (2021).

[35] Dong An, Noah Linden, Jin-Peng Liu, Ashley Monta-
naro, Changpeng Shao, and Jiasu Wang, “Quantum-
accelerated multilevel monte carlo methods for stochas-
tic differential equations in mathematical finance,” arXiv
preprint arXiv:2012.06283 (2020).

[36] Seth Lloyd, Giacomo De Palma, Can Gokler, Bobak

Kiani, Zi-Wen Liu, Milad Marvian, Felix Tennie, and
Tim Palmer, “Quantum algorithm for nonlinear differen-
tial equations,” arXiv preprint arXiv:2011.06571 (2020).

[37] Jin-Peng Liu, Herman Øie Kolden, Hari K Krovi, Nuno F
Loureiro, Konstantina Trivisa, and Andrew M Childs,
“Efficient quantum algorithm for dissipative nonlinear
differential equations,” arXiv preprint arXiv:2011.03185
(2020).

[38] Mario Motta, Chong Sun, Adrian TK Tan, Matthew J
O’Rourke, Erika Ye, Austin J Minnich, Fernando GSL
Brandao, and Garnet Kin-Lic Chan, “Determining
eigenstates and thermal states on a quantum com-
puter using quantum imaginary time evolution,” Nature
Physics 16, 205–210 (2020).

[39] Sam McArdle, Tyson Jones, Suguru Endo, Ying Li, Si-
mon C Benjamin, and Xiao Yuan, “Variational ansatz-
based quantum simulation of imaginary time evolution,”
npj Quantum Information 5, 1–6 (2019).

	Quantum Algorithms for Solving Partial Differential Equations
	Abstract
	Introduction
	Background
	Hamiltonian simulation
	Quantum linear equation solver

	Solving a PDE with a quantum computer
	Discretization
	Mapping
	Mapping to Schrodinger's equation
	Mapping to linear system
	Other types of mapping

	Initial state preparation
	Measurement

	Complexity analysis
	Variables of interest
	Analysis of the different components
	Is an exponential speed-up in solving PDEs possible?

	Discussion and open problems
	References

