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Decoders are an essential component of quantum error correction, having a large influence on the
performance of a given code. After having introduced the basic of quantum error correction and
the surface code, we review the different decoding algorithms proposed in the literature.

I. INTRODUCTION

In the early days of quantum computing, most of the
scepticism towards this new technology came from the
hardness of experimentally keeping and manipulating a
quantum state error-free for a long period of time [1].
The invention of quantum error correction created a new
wave of optimism in the field, proving that building a
fault-tolerant quantum computer, while challenging, was
not completely beyond our reach: as long as we manage
to engineer qubits that resist to noise below a certain
threshold, it is possible to detect and correct errors at an
arbitrary precision.

Since then, many quantum error correcting codes have
been proposed. One of the most promising classes of
codes is the surface code, belonging to the more general
category of topological quantum error correction. The
original idea, proposed by Alexei Kitaev in 1997, is to
encode each single logical qubit in a 2D lattice of physi-
cal qubits with periodic boundary conditions, or in other
words, a torus. He showed that by encoding quantum
information in a specific way on the torus, it is possible
to correct a wide ranges of errors affecting the qubits.

An important subroutine of quantum error correction
is the decoding algorithm: given the result of partial mea-
surements on the system, what is the most likely error
that occurred and how can we correct it? While an op-
timal procedure exists to correct the most likely errors,
the corresponding algorithm takes an exponential time
with respect to the number of qubits and is therefore of-
ten considered unpractical [2]. Therefore, the main chal-
lenge in designing a decoding scheme lies in the trade-off
between performance and running time (or complexity)
of the algorithm. A lot of creative solutions have been
proposed, based on a variety of techniques from graph
algorithms [3, 4] to neural networks [5].

In this paper, we will review the main ideas behind
quantum error correction and the surface code, as well
as the different types decoding algorithms.

II. QUANTUM ERROR CORRECTION

When running a circuit on a quantum computer, we
expect a state |ψ〉 to be produced at each cycle of the de-
vice. However, due to the noise, an alternative state

∣∣ψ̃〉
might be produced with a certain probability. Any quan-
tum error correction process will consist of the following

four steps:

1. Encode each logical state |ψ〉 as a state |ψ〉E de-
fined on more qubits.

2. Detect if an error happened by performing non-
destructive measurements on the physical state∣∣ψ̃〉

E

3. Correct those errors and decode the qubits to get
the corresponding logical state

4. Compute logical operations on the state by re-
defining a universal gate set on the code.

In this review, we will mostly be interested in the first
three steps, which can be summarized by the diagram
below:

|ψ〉 encoding−−−−−→ |ψ〉E
noise−−−→

∣∣ψ̃〉
E

decoding−−−−−→ |ψ〉

We review in this section the basic formalism of quantum
error correction.

A. Noise models

An apparent problem with the concept of error cor-
rection in the quantum domain is that noise is able to
deform our state in infinitely many ways. For instance,
we could construct a noise model where a rotation gate
R̂z(θ) is applied randomly to each qubit at every cycles:

|ψ〉 noise−−−→ R̂z(θ) |ψ〉

However, this apparent challenge can easily be solved by
noticing that all quantum errors can in fact be decom-
posed into only two types of errors:

Bit-flips: |ψ〉 −→ X̂ |ψ〉
Phase-flips: |ψ〉 −→ Ẑ |ψ〉

where X̂ and Ẑ are Pauli operators. For instance, our
rotation Rx(θ) can be written:

R̂x(θ) = cos
(
θ

2

)
Î− i sin

(
θ

2

)
X̂

and our model would be equivalent to applying a bit-flip
with probability sin2 (

θ
2
)
and nothing with probability
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cos2 (
θ
2
)
. Another example is the Ŷ Pauli error, which

is equivalent to applying both a phase-flip and a bit-flip,
due to the relation:

Ŷ = iX̂Ẑ

Therefore, a noise model only needs to specify the proba-
bility of having Î (no error), X̂, Ẑ, or both (i.e. Ŷ) at each
cycle. For example, the depolarizing noise model assigns
equal probability p/3 to all three Pauli operators:

Î : (1− p)
X̂, Ŷ, Ẑ : p/3

Another important noise model is the independent (or
uncorrelated) noise model, in which X̂ and Ẑ errors occur
independently with equal probability:

Î : (1− p)2

X̂, Ẑ : p(1− p)
Ŷ : p2

This decomposition of all errors into X̂ and Ẑ errors will
greatly simplify the error correcting process.

B. Encoding of a qubit

A code is a function that takes a logical state |ψ〉 to
another state |ψ〉E defined on more qubits. For instance,
the repetition code is defined in the following way:

|ψ〉 = a |0〉+ b |1〉 encoding−−−−−−→ |ψ〉E = a |000〉+ b |111〉

The set {a |000〉 + b |111〉} of all the possible encoding
results is called the codespace. If an error occurs on one
qubit, for instance a bit-flip on the first qubit, the state
will move out of the codespace:

|ψ〉E = a |000〉+ b |111〉 X1−−→
∣∣ψ̃〉

E
= a |100〉+ b |011〉

and it will be possible—at least in principle—to detect
the error and potentially correct it.

An important characteristic of a code is its distance:
the minimal number of one-qubit errors necessary to pass
from one codespace element to another. For the repeti-
tion code, considering only X̂ errors, the distance is d = 3.
From the distance we can deduce two important things:

• the minimal number of errors that can be detected:
d− 1

• the minimal number of errors that can be corrected:
bd−1

2 c

This finally allows us to define the notion of logical op-
erator : operator acting on d qubits of the code and
used to change its logical state. For instance, the op-
erator X̄ = X̂1X̂2X̂3 change the state from

∣∣0̄〉
= |000〉 to∣∣1̄〉

= |111〉 and vice-versa.

FIG. 1. (Left) Representation of the surface code for L = 5,
along with vertex operators (blue) and plaquette operators
(green). The physical qubits are placed on the edges. (Right)
Strings of Ẑ errors (red) along with the syndrome that results
from measuring vertex operators

C. Stabilizer formalism

To detect errors, that are states outside of the
codespace, we can use a set of non-destructive measure-
ments called stabilizers. For a given codespace C, we say
that a set S of operators is a stabilizer set of C if:

• All the operators in S commute with each others,
or in other words, can be measured simultaneously

• Each operator in S has two possible eigenvalues:
+1 (no error detected) and −1 (error detected)

• For all |ψ〉 ∈ C and S ∈ S, S |ψ〉 = |ψ〉 (elements of
the codespace are considered error-free)

The result of all the stabilizer measurements on a given
state is called the syndrome, and each−1 of the syndrome
is called an excitation.
Let’s illustrate this definition with the repetition code.

For this code, we can define the stabilizer set S =
{Ẑ1Ẑ2, Ẑ2Ẑ3, Ẑ3Ẑ1}. Indeed, all those operators commute
and measuring ẐiẐj will give +1 if the two qubits i and
j are the same, and −1 if they are different. Measuring
those three stabilizers will therefore tell us whether our
three physical qubits are the same, or to put in another
way, if the state is in the codespace. For example, if
we apply those three operators to the state |ψ〉 = |001〉,
the syndrome will be {1,−1,−1}. This syndrome indi-
cates that only the first two qubits are identical, and that
therefore a bit-flip probably occurred on the third qubit.
While the power of the stabilizer formalism might not

be obvious from the repetition code example, we will
see that it plays a crucial role when defining topologi-
cal quantum error correcting codes.
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III. SURFACE CODE

A. Definition

We will now consider a particular type of code, called
the surface code [6]. In this code, the physical qubits are
placed on the edges of a 2D lattice with periodic bound-
ary conditions, as represented in Figure 1. The code is
defined in a slightly different way than before: instead of
starting from the codespace and deducing the stabilizers,
we will start from the stabilizers. For the surface code,
we construct two types of stabilizers: vertex operators—
defined on each vertex as the product of X̂ operators on
the adjacent qubits—, and plaquette operators—defined
on each face as the product of Ẑ operators on the bor-
dering qubits. We can easily verify that all those oper-
ators commute, as either zero or two X̂ and Ẑ operators
intersect between plaquette and vertex stabilizers. More-
over, it is possible to define a dual lattice where all the
plaquette operators become vertex operators and vice-
versa. Therefore, every results obtained using one type
of operators can be readily generalized to the other.

B. Error detection

Let us now see what happens when a Ẑ error occurs on
our code. One can see from Figure 1 (right) that all Ẑ
errors can be seen as a set of strings on the lattice. Since
any plaquette operator P is made only of Ẑ operators,
it will always commute with our Ẑ error E and returns
+1 when measured: PE |ψ〉 = EP |ψ〉 = E |ψ〉. There-
fore, we need to use vertex operators if we want to be
able to detect our error. Measuring those stabilizers, we
can see that only the boundary of the string will be de-
tected by vertex operators, since boundary vertices are
the only ones that intersect with the errors on an odd
number of qubits (exactly one). The picture for X̂ er-
rors is very similar due the lattice duality. Continuous
strings of edges are replaced by strings of parallel edges,
and plaquette operators can be used to detect errors at
the string boundaries.

What happens if a string of errors form a loop? If the
loop is trivial, meaning that it does not go around the
torus, the error will correct itself. Indeed, a trivial loop
of Ẑ errors is always a product of plaquette operators,
and is therefore a stabilizer itself.

From this, one can see that the strings of errors going
around the torus will be the only undetectable errors.
Since the shortest such string has length L—with L the
number of rows or columns of the lattice—we can deduce
that the distance of the code is d = L. Those strings will
also form our logical operators.

FIG. 2. A decoding algorithm takes as input a syndrome and
returns a set of correcting operators (represented here as red
edges)

IV. BASIC OF DECODING

A. Idea and challenges

As we saw previously, a string of errors that does not
loop gives rise to a syndrome with −1 at the borders
of the string. However, a given syndrome can lead to
several strings of errors. The goal of decoding is to restore
the logical state of the code from a given syndrome, by
applying some operators on the lattice, as represented in
Figure 2. We can identify two important challenges that
a decoding algorithm needs to solve:

• A pair of excitations can be caused by several
strings. As illustrated in Figure 3, applying a cor-
rection on a different string can be fine, as long as
the resulting loop is trivial. Indeed, in that case,
the total operation formed by both the errors and
the correction will be inside the stabilizer group,
and therefore give back the initial state. On the
other hand, if the correction and the errors form a
loop around the torus, the logical state of the code
will be transformed and a logical error will appear.

• Given many pairs of excitation, we need to find the
correct matching: which pairs of excitations have
been created together with a string?

B. Evaluating a decoding algorithm

How can we evaluate and compare different decoding
algorithms? There are two main metrics in the decoding
literature:

• Error threshold: the minimal error rate such that
adding more physical qubits in the code results in
less logical errors. The threshold depends on the
type of code, the decoding algorithm and the noise
model, and can be either calculated theoretically
(in some specific cases) or estimated numerically.

• Running time: since the decoding algorithm must
be run at each clock cycle of the quantum com-
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puter, it is especially important to have a low run-
ning time. This can be measured by the time com-
plexity of the algorithm (with respect to the num-
ber N of physical qubits)

Another metric sometimes considered in the literature is
the logical error rate below threshold, which depends on
the size of the lattice and can give some valuable infor-
mation on the practical decoding performance [7].

C. Optimal decoding

A remarkable fact about decoding is that it is possible
to design an optimal algorithm—one that maximizes the
threshold for all noise models—and compute this thresh-
old theoretically in many cases. This algorithm is the
Maximum Likelihood Decoder (MLD) and simply con-
sists in finding the error compatible with the syndrome
which had the highest probability of occurring. In quan-
titative terms, if S denotes the syndrome and E(S) the
set errors compatible with the syndrome, the MLD solves
the following problem exactly:

max
E∈E(S)

P (E|S) (1)

The optimal error threshold has been calculated to be
around 11% [8] for the independent noise model and
around 18.9% for depolarization [9].

However, solving the optimization problem of Eq. (1)
requires to go through the exponential number of pos-
sible errors, and it can be proven that this problem is
NP-Hard in general [2]. Therefore, approximations are
necessary to implement a practical decoder, trading-off
the threshold for a better time complexity. Let’s start by
describing one of the first algorithms proposed in the lit-
erature, that formulates decoding as a Minimum-Weight
Perfect Matching (MWPM) problem [8, 10].

D. Minimum-Weight Perfect Matching

The MWPM formulation of decoding solves the prob-
lem of pairing excitations under two assumptions: 1) the
X̂ and Ẑ errors are uncorrelated and can therefore be con-
sidered independently, and 2) the most likely pairing is
the one that minimizes the total error weight, the weight
of an error being defined here as the number of affected
qubits. With those assumptions, the decoding problem
can be seen as a graph problem: we define a complete
graph whose nodes are the excitations. Each edge be-
tween two excitations si and sj is given by the minimal
distance in the lattice between si and sj . The goal is
to match all the nodes such that the total weight of the
selected edges is minimal. This problem of minimum-
weight perfect matching is well-known in the graph the-
ory literature and can be solved in polynomial time us-
ing for instance the Blossom algorithm, invented by Ed-
monds in 1965 [11]. The threshold of this decoder can

FIG. 3. The two types of loops that can occur when correcting
a syndrome. On the left, the correction operator combined to
the error forms a trivial loop, which is equivalent to a product
of plaquette operators (green). In the middle, the correction
creates a loop around the torus, resulting in a logical error

be computed theoretically, giving a value of 10.3% for an
independent noise model [8], which is very close to the
optimal threshold of 11%. However, this algorithm has
several drawbacks:

• Blossom’s algorithm takes O(N3) operations in the
worst case (with N the number of physical qubits),
which can be too slow when the code becomes large.

• Since it assumes that errors are uncorrelated, the
threshold under more realistic noise models such as
depolarization is lower than many other algorithms:
14.2% compared to 18.9% for the MLD.

• The second assumption is wrong in general, since it
does not take into account the degeneracy of errors
with equal weight

While the last two issues are challenging to solve within
this framework, solutions have been proposed for the
first one. An algorithm designed by Fowler et al. ap-
proximates the MWPM problem by removing a set of
well-chosen edges that are likely not to contribute to the
matching [10]. Using this trick, the authors provide both
theoretical and numerical evidence that the algorithm
runs in average in O(N) instead of O(N3). Another in-
genious method to accelerate the algorithm is to paral-
lelize it: provided a classical 2D square array that can
process groups of qubits in parallel, it is possible to run
the algorithm with an average constant time [3]. It also
requires the error rate to be below a certain threshold,
which the authors argue is probably around the MWPM
error threshold.

V. MODERN DECODING ALGORITHMS

We review here some of the most promising decoding
methods proposed in the recent literature. A summary
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of our comparison can be found in Table 1.

A. Approximate MLD methods

While the maximum likelihood problem cannot be
solved exactly, it is possible to approximate it using some
conventional statistical methods. Monte Carlo Markov
Chains (MCMC) is an example of approximation algo-
rithm that can be used for decoding [13]. To find the most
likely error, the idea of MCMC is to start with a random
error compatible with the syndrome. Then, a random
change is applied to the error (for instance a random sta-
bilizer). If this change has a higher likelihood than the
previous error, we accept it and repeat the procedure
with the new error. It can be proven that this iterative
process will converge to the most likely error. Another
version has been proposed in [7], where the threshold is
slightly lower, but the complexity is provably quadratic,
the algorithm easily parallelizable and the logical error
rate (below threshold) always lower than the error rate
of the MWPM algorithm.

Finally, [12] proposes a different class of approximate
MLD algorithms based on tensor networks. They obtain
a complexity of O(Nχ3), where χ is an approximation
parameter related to the bond dimension of a Matrix
Product State used in the algorithm.

B. Renormalization Group

A completely different technique based on the Renor-
malization Group (RG) was introduced in [14] and gen-
eralized to higher-dimensional codes in [15]. The idea
is to divide the lattice into small cells of four qubits. A
decoder is then applied to each cell and returns the prob-
ability for each qubit to be erroneous. The probabilities
in each cell are then averaged to give rise to a unique
probability per cell. This process is repeated iteratively
and can be used to find a relatively accurate correction
in a time scaling as O(N log(N). The authors obtain
a threshold of 16.4% for the depolarizing noise model,
which is not far from the optimal threshold of 18.9%.

C. Neural Network-based decoders

Let’s now consider a class of decoding algorithms that
has gain popularity in the recent years, which uses neural
networks as a way to approximate the decoding function
[5, 16–21]. The motivation behind this approach is that
neural networks can be trained to learn a large variety of
noise models and have a very low running time. It has
been shown that their pseudo-threshold is usually very
high, reaching for instance 16.4% for the depolarizing
noise [5]. Neural network-based decoding usually consist
in the following steps:

1. Create a dataset of errors and associated syndromes
using simulations

2. Using this dataset, train a neural network that
takes a syndrome as input and returns the most
likely error.

3. Use the trained neural network as a decoder, pos-
sibly for different noise model or on a real device

Many different architectures have been proposed for this
task, including Boltzmann Machines [16], Recurrent Neu-
ral Networks [17], Convolutional Neural Networks [21],
Neural Ensembles [19], and policy networks trained using
reinforcement learning [22]. An important problem with
this approach is the dataset generation: how to generate
a dataset for codes that are too large to be simulated? To
solve this issue, [18] proposes to combine RG and neural
networks: by solving the decoding problem iteratively on
small cells, it is possible to use a neural network trained
only on a small and easily simulable code.

D. Other methods

Other promising methods have recently been proposed
in the literature. An example is the Union-Find decoder
[4, 23], which iteratively turns Pauli errors into losses
and uses the Union-Find data structure to correct those
losses. Cellular automaton decoders form another class of
decoders that has recently been shown to be particularly
useful for higher dimensional surface codes [24].

VI. DISCUSSION

We have introduced the main ideas behind quantum
error correction and seen how the stabilizer formalism can
be used to define a powerful type of encoding: the surface
code. We have also studied the principles of decoding and
compared some recent algorithms proposed for this task.
While a lot of progress has been made towards build-

ing more efficient and accurate decoders, many challenges
still remain. An important one would be to identify codes
and decoders that can be used to approximate quantum
error correction on near-term devices, where the number
of qubits is low and the time available for decoding is very
low. In this direction, the authors of [25] designed an ap-
proximate decoding scheme tailored towards the Single-
Flux Quantum technology, whose decoding time has been
reduced to less than 20 ns.
Another challenge concerns neural network decoders.

While they seem to have good performance in practice, it
could be interesting to gain more theoretical knowledge
on this type of decoders. In particular, can we interpret
the function learned by the neural network as in [26]?
Can we derive some scaling results showing that they
will still be trainable for large codes?
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Algorithm Complexity Complexity (parallel) Threshold (independent) Threshold (depolarization)

MLD NP-Hard [2] / O(Nχ3) [12] ? 11% [8] 18.9% [9]
MWPM O(N) [10] O(1) [3] 10.3% [8] 14.3%
MCMC O(N2) [7] O(N) [7] ? 18.5% [13] / 15.5% [7]
RG O(N log(N)) [14] O(log(N)) [14] 9% [14] 16.4% [14]
Union-Find O(N) [4] ? 9.9% [4] ?
Neural Networks ? ? ? 16.4% [5]

TABLE I. Comparison of the different decoding algorithms on four criteria: complexity without parallelization, complexity
with parallelization, threshold with an independent noise model and threshold with a depolarization model. Question marks
mean that we were not able to find a value in the literature

Finally, the field of decoding would benefit from hav-
ing a large empirical review of all the existing decoders:
many papers evaluate their algorithm on only one noise
model or surface code architecture, and different numer-

ical procedures are used by different authors. Having a
general benchmark of all the existing algorithm on realis-
tic noise models could help to shape the future directions
of the field.
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