
Classification of Topological Phases of Matter

Arthur Pesah1
1Department of Physics and Astronomy, University College London, London WC1E 6BT, UK

(Dated: March 2020)

The past forty years have witnessed the discovery of a whole new class of quantum materials, with
some unique properties, such as long-range entanglement and a topology-dependent ground-state
degeneracy. Classifying those so-called topological phases of matter is essential to understand their
properties and find potential applications. While a large range of simple topological systems have
already been classified, more exotic systems continue to resist classification attempts. After having
introduced the two main paradigms to classify phases of matter—Landau’s symmetry-breaking and
topological order—, we go on to describe the recent achievements in terms of classification and the
remaining challenges. We then explore more recent discoveries that go beyond topological order—the
fracton order—and the different attempts at classifying them.

I. INTRODUCTION

An important objective of condensed matter physics is
to allow the discovery and efficient design of new materi-
als, in phases where quantum effects play a critical role.
Among the most sought-after quantum materials, we can
find high-temperature superconductors, quantum hard-
drives, noise-free quantum computers, and spintronic de-
vices, which all have a wide range of far-reaching appli-
cations. All of those materials can be studied with sta-
tistical physics models—typically lattices of spins with
some particular interactions—and the desired effects re-
produced mathematically. However, two challenges re-
main to implement those materials in practice: one is
theoretical—what is the set of lattice models that ex-
hibit a certain quantum effect, and for what range of
parameters?—and the other is experimental—how can
we synthesize a material that accurately reproduces one
of those models?

To solve the theoretical challenge, a first step would
be to build a periodic table of all quantum materials,
where one could fully characterize a model from the lat-
tice type and dimension, the nature of the interactions
and their internal symmetries. Conversely, an experi-
mentalist seeking a particular quantum effect could find
all the models and phases that exhibit this effect in the
table.

A first classification of this kind was achieved by Lev
Landau in the middle of the 20th century, using the no-
tion of symmetry-breaking. While his classification was
completely successful at predicting the properties of most
phases of matter—such as ferromagnetism—, new discov-
eries in the 1980s showed the incompleteness of his frame-
work. Phenomena such as the quantum Hall effect and
materials such as quantum spin liquids could not have
been predicted using this paradigm. Since those phenom-
ena are driven by topological effects—properties that are
invariant to local perturbations and depend on the lat-
tice topology—, they were called topological phases of
matter. Following their identification as a new type of
matter in 1989 [1], many progress have been made to
classify them exhaustively. In particular, one and two-

dimensional systems are almost fully classified, as well as
systems of non-interacting bosons and fermions. How-
ever, many challenges remain in higher dimensions and
for more complex systems, such as the recently discov-
ered fractons.
In this paper, we will review the main ideas behind

topological phases of matter, starting from Landau’s
symmetry-breaking paradigm, contrasting it to the no-
tion of topological order, and finally presenting the cur-
rent classification results in terms of topological order
and beyond.

II. LANDAU’S SYMMETRY-BREAKING
PARADIGM

Before the discovery of the quantum Hall effect, spin
liquids and other new forms of matter in the 1980s, it
was widely believed that all the phases of matter could
be classified through a unique framework: the symmetry-
breaking paradigm. The basic idea is that any material
can be described by a Hamiltonian, which characterizes
the interactions between the particles and the effects of
the environment. This Hamiltonian almost always have
some symmetries—parity, time reversal, translation in-
variance, etc.—that often influence the symmetries of the
ground-state. When the ground-state has the same sym-
metries as the Hamiltonian, we are in a symmetric phase,
otherwise we are in a symmetry-breaking phase.
The prototypical example of symmetry-breaking is the

transverse-field Ising model, described by the following
Hamiltonian:

H(g) = −
∑
i,j

ZiZj − g
∑
i

Xi (1)

where Zi andXi are the corresponding Pauli matrices ap-
plied to the spin i. This Hamiltonian is characterized by
a global Z2-symmetry: when all the spins are flipped at
once, the Hamiltonian stays the same, or more formally[

H,X⊗n
]

= 0 (2)

We can study the ground state of this Hamiltonian in
two regimes: g →∞ and g = 0.
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When g →∞, the Hamiltonian becomes

H = −g
∑
i

Xi (3)

Its ground state is given by the equal superposition of all
the spin configurations:

|ψ0〉 = 1√
d

∑
all configurations

|0110...〉 (4)

This phase is symmetric, since flipping all the spins at
once does not change the ground-state:

X⊗n |ψ0〉 = |ψ0〉 (5)

On the other hand, when g = 0, the Hamiltonian be-
comes

H = −
∑
i,j

ZiZj (6)

which has 2-dimensional ground-space given by

|ψ0〉 = a |0...0〉+ b |1...1〉 (7)

where |a|2 + |b|2 = 1. In general,

X⊗n |ψ0〉 6= |ψ0〉 (8)

meaning that this phase is symmetry-breaking.
Those phases can be classified the following way. Each

phase is labelled as (GH , Gψ) where GH is the symmetry
group of the Hamiltonian and Gψ ⊆ GH the symmetry
group of the ground state. In our example, the symmetry
group of the Hamiltonian is given by GH = {X⊗n, I},
the symmetric phase corresponds to Gψ = GH and the
symmetry-breaking phase to Gψ = {I}.

Finally, a good classification of phases should be phys-
ical, meaning that each phase can be characterized by
some distinguishable properties that can be measured in
the lab. In the Landau paradigm, this distinguishable
property is called the order parameter and corresponds
to an observable m such that 〈m〉 = 0 in the symmetric
phases and 〈m〉 6= 0 in the symmetry-breaking phase. In
the Ising model, m is the magnetization, defined as the
average value of the spins:

m = 1
N

∑
i

Zi (9)

Therefore, the Landau symmetry-breaking paradigm
seems to give a very general method to classify phases
with group theory and characterize them with a local
order parameter.

III. TOPOLOGICAL ORDER

Now we are allowed
To disavow Landau
Wow...
—John Preskill

FIG. 1. Schematic illustration of a phase transition. The grey
area represents a set H of Hamiltonians. A path of Hamilto-
nians H(g) ∈ H goes through phase transition if there exists
an observable that become singular along the path, or equiv-
alently that the energy gap has closed

A. Beyond Landau’s paradigm

In the 1980s, many new quantum phenomena started
to appear that could not be explained with tradi-
tional methods: the quantum Hall effect [2, 3], high-
temperature superconductivity [4], quantum spin liquids
[5], etc. It is to explain a particular instance of the
latter—the chiral spin liquids—that Xiao-Gang Wen pro-
posed the theory of topological order [1]. Indeed,
people first identified the chiral spin liquid phase as a
symmetry-breaking phase (for time-reversal and parity).
However, it was then realized that different macroscopic
properties (such as the spin Hall conductance) could
be possible within the same symmetry-breaking phase,
meaning that the Laundau classification was insufficient
to describe this material [6].

Topological order introduces new observable quanti-
ties to characterize phases of matter, going beyond local
order parameters and symmetry-breaking. Those quan-
tities are characterized by their robustness to local per-
turbations and their dependence on the topology of the
material (torus, sphere, etc.), hence the name of topo-
logical phases. Examples of topological quantities in-
clude: robust ground-state degeneracy (i.e. degeneracy
that does not change when applying local perturbations),
non-abelian geometric phase, entanglement, etc.

To understand how those topological phases arise, we
first need to introduce a few important concepts. Quan-
tum phases of matter can be defined in two ways: from
a Hamiltonian perspective and from a state perspective.
Let us start with the Hamiltonian way.
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B. Phase transitions from Hamiltonians

Let H be a set of Hamiltonians, corresponding
to the class of systems under consideration (e.g.
fermionic/bosonic Hamiltonians, Hamiltonians with a
given symmetry, etc.). Within this set, we can define
the notion of phase transition.

Definition 1 (Quantum phase transition) Let
H(g) ∈ H be a family of Hamiltonians, and |ψ0(g)〉
be the ground-state of H(g). We say that a phase-
transition occurs at gc if there exists an observable O
such that 〈O〉|ψ0(g)〉 is singular at gc.

This definition has the merit of being consistent with
the classical definition of phase transitions. However, it
is not very practical for our goal of classifying phases,
since one needs to consider all possible observables to see
if a phase transition occurs at one point. The following
theorem gives a more convenient characterization [7]:
Theorem 1 A phase transition occurs at gc if and only
if the energy gap of H(g) closes at gc.
An illustration of this theorem is given in Figure 1.

We can now define a quantum phase as an equiv-
alence class of Hamiltonians in H that can all be con-
nected without going through a phase transition. For
instance, the symmetric and symmetry-breaking phases
of the Ising model are two examples of quantum phases
in the set H of Z2-symmetric Hamiltonians (see Figure
2). An important point to notice is that different sets H
will give rise to different phases. Indeed, an unavoidable
phase transition within H can sometimes be avoided by
considering the paths outside of H.
The notion of topological order arises when we consider

a large class of Hamiltonians, the set HG of all gapped
Hamiltonians (i.e. whose gap does not close in the ther-
modynamics limit [8]). Within this set, we can define the
concept of topological order1 [9]:
Definition 2 (Topological order) A phase in HG is
said to have topological order if its ground-state degener-
acy is stable against any local perturbation
The quantum error-correcting code known as toric code
[10] is an example of topological order. Indeed, it is de-
fined the 4-dimensional stable ground space of a certain
Hamiltonian, such that each subspace encodes the logical
qubits |00〉, |01〉, |10〉 and |11〉 with a certain protection
against local noise.

To classify all the topologically-ordered phases, it is
convenient to switch to another, representation of phase
transitions: instead of considering Hamiltonians, we will
now consider states.

1More precisely, it was noticed in [9] that a better choice to
define topological order is the set of gapped quantum liquid systems,
which behave better in the thermodynamic limit. However, for
the purpose of this introduction, we will limit ourselves to gapped
quantum systems

FIG. 2. The two phases of the Ising model, characterized by
different symmetry properties, ground state degeneracies and
a gap closing at the transition

C. Phase transitions from quantum states

For a set H of Hamiltonians, we can define S as all the
ground states of Hamiltonians in H. We now say that
two states |ψ(0)〉 and |ψ(1)〉 in S are in the same phase
if there exists a path H(g) of Hamiltonians, such that
|ψ(0)〉 is the ground state of H(0), |ψ(1)〉 is the ground
state ofH(1), andH(g) does not close the gap. This defi-
nition, while very natural, still involves Hamiltonians and
is therefore not very practical when dealing with states.
The following theorem gives a better characterization of
phases from a state viewpoint, in the case where H = HG
[11]:

Theorem 2 Two states are in the same phase if and
only if they can be connected by a local unitary evolution,
i.e. a local quantum circuit of constant-depth.

The use of quantum information in this characterization
suddenly broadens the set of tools that can be used to
classify phases of matter. In particular, it gives rise to
following corollary:

Corollary 1 There are at least two phases of matter in
HG: one that contains the product state and that we call
trivial order, and the other that contains some highly-
entangled states and that we call topological order

Indeed, it is known in quantum information theory that
highly-entangled states cannot be created from a prod-
uct state with a constant-depth local circuit, so there
has to be at least two phases. It is shown in [9] that the
state definition of topological order is the same as the
Hamiltonian definition. The trivial order is said to ex-
hibit short-range entanglement, while the topological
order has long-range entanglement [7].
While the trivial order is made of only one phase by

definition (the one that contains the product state), many
phases can possibly have topological order. Enumerating
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all the possible topologically-ordered phases of HG for
a given dimension will be one of the first goals in our
classification.

D. Properties of topological order

So far, we have seen two defining properties of topologi-
cal order: stable ground-state degeneracy and long-range
entanglement. This last characteristic can be quantified
more precisely using the notion of topological entan-
glement entropy, discovered by Kitaev and Preskill in
2005 [12]. To define it, let us consider a 2D quantum
state |ψ〉, made of two regions A and B, defining some
partial states ρA and ρB , and separated by a boundary
of size L:

A ground state |ψ〉 is said to satisfy the area law if the
Von Neumann entropy of ρA, S(ρA) = −Tr[ρA log(ρA)],
is proportional to L (and not the volume of A for in-
stance). It is widely believed that the area law holds for
any gapped ground state, and it has been proven in many
special cases, e.g. for frustration-free Hamiltonians [13].
In the context of topological order, an alternative form
of the area law can be shown:

S(ρA) ∝ αL− γ (10)

This offset γ defines the topological entanglement en-
tropy, and is for instance equal to log(2) for the toric
code [8, 14]. More generally, any topologically-ordered
state is characterized by a non-zero γ [8].
Examples of topologically-ordered states includes frac-

tional quantum Hall states, chiral spin liquids and the
toric code [8].

E. Symmetry-protected topological phases

So far, we have only considered phases of gapped
Hamiltonians without symmetry (HG). Therefore, it
is natural to ask what happens if we restrict the class
of Hamiltonians under consideration by imposing some
symmetries. In this case, the trivial order can be sep-
arated into multiple phases protected by our symmetry,
as illustrated in Figure 3. Those so-called Symmetry-
Protected Topological (SPT) phases, while char-
acterized by short-range entanglement, are richer and
more complicated to classify than topological order.
Examples of SPT phases include topological insula-
tors/superconductors and the integer quantum Hall ef-
fect. It is worth noticing that symmetry-breaking phases

FIG. 3. Illustration of a Symmetry-Protected Topological
(SPT) phase: when considering the set HG of gapped Hamil-
tonians without any symmetry constraint, phase transitions
in the trivial order can always be avoided by taking another
path (dashed line). However, when considering a restricted
set of symmetric Hamiltonians HS , this phase transition can
create multiple phases with short-range entanglement called
symmetry-protected.

FIG. 4. First layer of classification of topological phases,
from [8]. We can first separate short-range entangled (SRE)
states from long-range entangled (LRE) states (also called in-
trinsic topological order). Then, multiple phases can appear
within each region, either through symmetry-breaking (SB)
or through SPT or SET phases that preserve the symmetry
(SY).

can appear as well, now that our Hamiltonian has some
symmetries. In the literature, SPT phases are often de-
fined as preserving the symmetry, distinguishing them
from symmetry-breaking phases [8].
Symmetry constraints can also create new phases in

the topological order region. When those phases are not
simple instances of symmetry-breaking, they are called
Symmetry-Enriched Topological (SET) phases.
Examples of such phases include the topological Mott-
insulator and the fractionalized topological insulators [8].
A summary of this first layer of classification can be

found in Figure 4
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FIG. 5. Ten-fold classification of non-interacting systems (i.e.
topological insulators/superconductors) [15]. T , C and S are
respectively time-reversal, charge-conjugation and chiral sym-
metry, where S = T · C and T 2 ∈ {0, 1,−1} (same for C2.
For each dimension, Z indicates the presence of an infinite
number of phases and Z2 the presence of two phases.

IV. CLASSIFICATION OF TOPOLOGICAL
PHASES

We have just seen that topological matter can be
divided into trivial and topological order, as well as
symmetry-enriched, symmetry-protected and symmetry-
breaking phases. We already know how to classify
symmetry-breaking phases—using the symmetry group
of the Hamiltonian and of the ground-state, (GH , Gψ)—
and would now like to generalize this classification for
all the other types of phase. We will now see three spe-
cial cases where such classification has been performed or
where progress has been made: non-interacting systems
of boson or fermions, 1D system (complete classification)
and higher-dimensional systems (partial classification).

A. Non-interacting systems

One of the first types of system to be fully classified
is when H is made of fermionic or bosonic Hamiltonians
with no interaction. Indeed, it can be shown that free
fermions and bosons have only ten possible global sym-
metries, which are all the combinations of time-reversal,
charge-conjugation and chiral symmetry. This so-called
ten-fold way classification of free bosons/fermions can
then be used to describe all possible SPT phases of topo-
logical insulators and superconductors, using for instance
tools from K-theory [16–18]. An illustration of this clas-
sification is given in Figure 5.

FIG. 6. Summary of the classification of 1D boson/spin sys-
tems, from [8]

B. One-dimensional systems

A complete classification of one-dimensional systems
was established independently by two groups in 2011 [7,
19]. This classification contains two important results:

1. There is no topological order in 1D (all ground-
states have short-range entanglement)

2. The SPT phases are labelled by (GH , Gψ, ω) where
ω ∈ H2 (Gψ, U(1)) is a projective representation
of Gψ, living in the second cohomology group
H2(Gψ, U(1)). Figure 6 gives a summary of all the
different symmetries and labels for bosonic systems.

To derive those results, the authors of both [7] and [19]
used two key ideas: 1) all 1D ground-states satisfy the
area law and can therefore be written as matrix-product
states (MPS) [20] ; 2) generalized local unitary evolution
(where degrees of freedom are allowed to be removed)
also preserves the phase. Using those key ideas, proving
for instance point 1 simply consists in finding a renor-
malization procedure that drives any MPS to a product
state.

C. Towards higher dimensions

Finally, significant progress has been made to classify
higher-dimensional systems. For instance, 2D systems
with topological order, with a unique ground state de-
generacy, or with a PEPS ground state (generalization of
MPS in 2D), can be classified using projective represen-
tations, similarly to the 1D case [19]. In the general 2D
case, the mathematical formalism becomes much more in-
volved. For instance, 2D bosonic systems can be labelled
by modular tensor categories [6] and fermionic systems
by fusion categories [21].
In 3D, a classification has been established in several

cases: when point-like excitations are all bosonic [22],
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when some point-like excitations are fermions [23] and
when the symmetries behave similarly to topological in-
sulators and superconductors [24].

V. BEYOND TOPOLOGICAL ORDER?

In the same way that Landau’s symmetry-breaking
paradigm was extended by considering topological phases
of matter, the reader might rightly wonder whether some
phases exist beyond topological order. In other words,
are there phases that cannot be described using the
framework developed above?

The closest candidate to a new type of order is the
fracton phase of matter [25]. Discovered by Jeongwan
Haah in 2011 [26], fractons can only appear in three-
dimensional systems and are characterized by a set of
unique properties, that make them different from ordi-
nary topological matter: immobile quasi-particles, ex-
ploding ground-state degeneracy with the system size,
fractal structure (hence the name “fracton”), etc. While
fractons appeared for the first time in a particular model,
the X-Cube model (also known as Haah’s code), it was
later discovered (2015) that they can emerge in a large
variety of ways and form their own new type of matter
[27, 28].

The question of how to extend topological order to in-
clude fractons is still an open research problems, but sev-
eral candidates for a new general theory have been pro-
posed, such as cellular topological states [29] or homoge-
neous topological order [30]. Meanwhile, fracton phases
of matter have been characterized by the notion of “foli-
ated fracton order” [31, 32], where the three-dimensional
system is decomposed into 2D layers, and the addition
or suppression of layers is allowed in the adiabatic evo-
lution. Whether the final theory of fractons will require
only some small tweaks to the topological framework, or
will lead to a completely novel understanding of matter
is an essential question whose resolution could lead to
fascinating applications.

VI. DISCUSSION

While it seems hard to summarize all topological
phases in a single periodic table as in chemistry, this
case study has allowed us to take a glance at different

components of such a table. We saw that symmetry-
breaking phases can be classified by the symmetry group
of the ground-state and the Hamiltonian, that topological
phases separate a topological from a trivial order through
entanglement and ground-state degeneracy properties,
and that for symmetric Hamiltonians, both orders are
made of many sub-categories, mainly the symmetry-
protected and the symmetry-enriched phases. Enumer-
ating all those phases for different types of Hamiltonians
with different symmetries is one of the main challenges of
the field, but significant progress has been made in last
ten years: a complete characterization of 1D systems (us-
ing projective representations) and non-interacting sys-
tems (using K-theory) has been achieved while only a
few steps remain for a classification of higher-dimensional
systems in most cases of interest. Meanwhile, the discov-
ery of fractons has challenged the whole field by intro-
ducing a completely new type of 3D matter that resists
the current topological classification, but steady progress
has been made to develop a framework that would include
them.
I can identify four open research directions that could

have important consequences for the future of the field:

1. Finishing and simplifying the classification of topo-
logical phases in 2D and 3D systems (and poten-
tially higher dimensions)

2. Developing a coherent framework of topological or-
der that include fractons

3. Classifying gapless states: so far we have only con-
sidered gapped states, but many interesting quan-
tum and topological effect seem to happen in gap-
less systems [33].

4. Pursuing the connections between quantum error-
correction and topological phases of matter. For
instance, could we use fractons as a practical quan-
tum code, as proposed in [34]?

Finally, our last challenge is experimental: could we
bridge the gap between our very formal classification and
the discovery and design of new materials? Topological
matter has a bright future with an endless list of poten-
tial applications, and understanding them better through
classification is certainly a first step towards their prac-
tical implementation.
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