Adiabatic Quantum Computing

Until now, we have worked exclusively with quantum algorithms that can be written as
a succession of unitary gates taken from a universal gate set. However, the gate-based
model of quantum computing is far from being the unique way to think about quantum
algorithms. This chapter introduces a different paradigm of quantum computing, called
Adiabatic Quantum Computing (AQC) or Quantum Annealing®. Instead of using
a discrete succession of gates, AQC relies on the slow analogue evolution of a physical
system, with the objective of solving an optimization problem (see Figure 1).

While AQC is equivalent to the circuit model (up to a polynomial overhead), it has
unlocked a different way of thinking about quantum algorithms, can serve as a heuristic to
tackle NP-HARD problems, and has a very different experimental implementation with its
own advantages and drawbacks.

This chapter begins with a description of the ground state problem—the optimization
problem solved by quantum annealing—and its relation to the class of NP-HARD problems
known as QUBO. We then examine the adiabatic algorithm and the adiabatic theorem that
underlies it. Finally, we delve into a crucial component of this algorithm: the choice of the
adiabatic path.

Figure 1. Schematic illustration of adiabatic quantum computing: by starting from the solution
of a simple optimization problem (left) and slowly changing it to a complicated one (right), we
are guaranteed by the adiabatic theorem to stay in the minimum during the whole evolution

1 The ground state problem

The objective of quantum annealing is to solve the ground-state problem, that can be
stated as follow:

Definition 1.1 (Ground-state problem). For an input Hamiltonian H, find an eigen-
state 1) of H with the smallest eigenvalue Ey. The state |1)g) is called the ground
state of H and is the solution to following optimization problem:

|%0) = ar%wf;lin (Y H[Y) (1.1)

A simple proof of Eq. (1.1)—called the variational principle—is proposed in Exer-
cise 1.1. Solving the ground state problem is of general interest in both the physics and

L Some authors consider quantum

annealing as the noisy and more real-
istic version of the ideal AQC model
(with no adiabaticity or universality
constraint). However, the difference
is not rigorously defined in the lit-
erature and we will consider them
as synonyms in this book (see His-
tory and Further Reading for more
information about the usage of those
terms)
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optimization communities. In physics, simulating a quantum system in equilibrium often
amounts to finding the ground state of a Hamiltonian modelling this system. Therefore,
quantum annealing has natural applications in quantum chemistry and condensed mat-
ter physics for instance. Maybe more surprisingly, Eq. (1.1) can also represent a large
class of purely classical optimization problems. To see this, consider the following class of
Hamiltonians, called Ising Hamiltonians:

.7 i

where o7 is the Pauli-Z matrix applied on qubit 7 and J;;, h;, are real coefficients. Since H
is diagonal in the computational basis, its ground state is an element of the computational
basis. Noting [1) = |q1...¢n), we can rewrite Eq. (1.1) as:

(Y| H[y) = Z Jij (q1---anlof o5 |q1.-.qn) + Z hi{q1---qnlo7]q1--qn) (1.3)
.3 i
=2 Jy(DEDE 4+ 3 (1) (1.4)
1,3 i
= Zjijsisj +th‘8i (1.5)
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where we defined s; = (—1)% € {—1,1} in the last line.

The problem of minimizing f(s) = Z” Jijsis;+,; his; belongs to a class of problems
known as Quadratic Unconstrained Binary Optimization (QUBO) in computer science.
More precisely, a QUBO problem is defined as the minimization of

f(ac) = ZQijxixj (16)
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where each x; € {0,1} instead of {—1,1}. The equivalence between Ising and QUBO
problems can be established by the change of variable s; — 2z; — 1 in Eq. (1.5).

QUBO problems are known to be in the complexity class NP-HARD, and are therefore
likely not solvable efficiently in general, even by a quantum computer (the implications for
quantum annealing will be discussed in the next section). Due to the equivalence between
all the NP-HARD problems, many famous optimization problems can be formulated as
QUBO (see Box 1 and Exercise 1.2). Quantum annealing has therefore been studied in the
context of combinatorial optimization (e.g. travelling salesman, nurse scheduling), machine
learning (e.g. ensemble methods, clustering), finance (e.g. portfolio optimization), particle
physics (e.g. tracking) and many other fields.
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Box 1: MaxCut

A typical example of problem that can be framed as a ground state problem is
MaxCut. Considering a graph with weighted edges, we define a cut as a partition
of the edges into two regions. The maximum cut is the cut that maximizes the
total weight of the edges connecting the two regions (see Figure 2). If we call J
the adjacency matrix of the graph, i.e. J;; is the weight of the edge connecting the
nodes ¢ and j, we can define the following Ising Hamiltonian:

H = Z,]ijo'fo'; (17)
ij

to which corresponds an energy function E(s) = }2,; Jijsis;. Notice that every
choice of s defines a partition of the nodes: those for which s; = 1 and those for
which s; = —1. Minimizing E would lead to s; # s; (i.e. s;s; = —1) for high values
of J;; and s; = s; for low values of J;;, thereby solving the MaxCut problem.
While MaxCut is NP-HARD—meaning that it is very likely not solvable efficiently in
general, even by a quantum computer—not all instances are necessarily hard. The
hardness of a given instance (or family of instances) often depends on the properties
of the associated graphs. For instance, MaxCut on planar graph can be solved in
polynomial times. For this reason, the ability of a quantum annealer to represent a
large variety of graph (which depends on the connectivity of the qubits) is crucial
in the quest for a quantum advantage.
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Figure 2. Example of graph to which we apply MaxCut. The maximum cut is represented
in dashed red line and separate two regions: the blue nodes {2,4, 5} and the orange nodes
{1,3}. The total energy for this cutis E=1+2—-10—-12—-5—-6 = —30

Exercise 1.1 (Variational Principle). Show that the ground state |t)g) of a Hamiltonian
H is the solution to the optimization problem

min (Y[H|¢)

(Hint: start by showing (WY|H|p) > Eq for all |¢) and (o|H|vo) = Eop)

Exercise 1.2 (Max-2-SAT). Max-2-SAT is another typical example of NP-Hard prob-
lem. A satisfiability problem (SAT) is a decision problem that consists in determining
if for a given Boolean formula on N variables, there exists an assignment of those vari-
ables that makes the formula true. Considering the propositions that can be written
as a series of ANDs (A) between ORs (V) of 2 variables, such as

(1 Va) A (T2 Va3) A (z1 V T3),



THE ADIABATIC ALGORITHM

where T; is the negation of x;, Max-2-SAT consists in finding the maximum number
of OR clauses that can be satisfied simultaneously. In the example above, all the OR
clauses can be satisfied (take z1 = z9 = 23 = 1 for instance), but in

(x1 Vaa) A(TTV 22) A (21 VT2) A (TT V T2),

only three OR clauses can be satisfied simultaneously (e.g. the first three with x; =
zg =1).

Can you formulate Max-2-SAT as a QUBO problem? (Hint: you can use the fact
that ©1 V 22 = Ty AN T3)

2 The adiabatic algorithm

To solve the ground state problem, adiabatic quantum computing works by taking ad-
vantage of an important result discovered in the early days of quantum mechanics, the
adiabatic theorem. The theorem uses the notion of gap of a Hamiltonian, which is
defined as the energy difference between the first excited state and the ground state:

A=E —E, (2.1)

Moreover, a Hamiltonian is said to be gapped if A # 0. We are now ready to state the
2

theorem®:
Theorem 2.1 (Adiabatic Theorem). Let H(¢) be a smooth family of Hamiltonians
parametrized by ¢ € [0,T], such that H(0) = Hy (initial Hamiltonian), H(T) = Hp
(problem Hamiltonian) and H(¢) is gapped for all ¢. If we initialize a system in the
ground state |1(0)) of H; and let it evolve with H(t) for a time T following the
time-dependent Schrodinger’s equation

H(0) 1(2)) = ~ig 16 (0) (22)

then [(T')) will be the ground state of Hp for T sufficiently large. More precisely,
T is required to grow as
1
T> A (2.3)

min

where Ay, is the minimum gap taken along the path (see Figure 3).

The proof of the adiabatic theorem is slightly technical and out of scope for this intro-
duction. The interested reader can find a self-contained proof in [2].

2 Numerous statements of the adi-
abatic theorem can be found in the
literature, with more or less precise
analysis of the approximation error.
A review of those different theorems
can be found in [1].
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Figure 3. Ground-state and excited state energies of H(t) along a trajectory between H; and
Hp. The minimum gap Amin occurs in the middle of the path and a jump to the excited state (as
illustrated by the dashed green line) is likely to occur at this point if Apin is too small and the
speed too fast.

In practice, let’s imagine that we want to find the ground state of an Ising Hamiltonian

Hp =73, j Jijoio; +>, hio?. The adiabatic theorem gives rise to the following algorithm:
1. Initialize the system in the ground state of a simple Hamiltonian H;. For instance,
>®

we can take Hy = — ). 07, whose ground state [+)“" can be easily prepared.

2. Find a continuous path—also called adiabatic path or annealing schedule—
between H; and Hp. A common choice is the linear interpolation

H(t) = %Hp 4 (1 _ ;) H, (2.4)

but more advanced schedules can be considered in order to maximize the minimum
gap along the path (and therefore minimize the total time, as of Eq. (2.3)). We will
discuss the problem of finding an optimal schedule in Section 3.

3. Measure the final state |¢(T")) in the o*-basis. If T is large enough, it should be the
ground state of Hp, i.e. a computational basis state encoding the solution to the
associated QUBO problem.

The reader may now wonder if we have finally found a procedure to solve any NP-
HARD problem efficiently on a quantum computer. Unfortunately, as discussed in Chapter
6.6, it is unlikely that quantum computers have this ability (i.e. that BQP contains
NP), even for quantum annealers. The reason is that hard instances of QUBO with no
particular structure, such as random instances, have a gap that vanishes exponentially with
the problem size, requiring an increasingly large annealing time to find the solution. The
hope is that AQC could give a better (or faster) result on some particular instances than
most classical heuristics.

Exercise 2.1 (Adiabatic Grover). To see the equivalence between the gate and the
adiabatic model, one can construct an equivalent of Grover’s algorithm (Chapter 6)
for adiabatic quantum computers. Let Hp = I — |m)(m| where m is the n-bit string
that we are searching for—Hp is the equivalent of the oracle in Grover’s original
algorithm—and Hy = I — |4+ )+4| where |4) = |+)¥".

(a) Show that the H(s) = sHp + (1 —s)H; has a 2-dimensional invariant subspace,
spanned by |m) and |m*) = \/% Yic{o1ym\(my |9

(b) Write the restriction of H(s) in this invariant subspace as a 2 x 2-matrix and
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prove that its eigenvalues are given by (1 — A(s)) and % (1 + A(s)), where

A(s)\/N+4(N ;VI)s(s—l) (25)

(c) Show that all the other eigenvalues of H(s) are equal to 1 (Hint: you can
write H(s) = M(s) + (I — |[m)m| — |m*)m=|) where M(s) belongs to the
invariant subspace defined above and (I — |m)m| — |m>Ym>|) is a projector
on the orthogonal subspace)

(d) Deduce that A(s) is the gap of H(s), and show that its minimum is

s(o-1)- )

2

Since the annealing time scales as 1/AZ; | we have found an algorithm that run in

O(N). We will see in Section 3 that with a better adiabatic path, we can recover the
O(V/N) of Grover’s algorithm.

3 Choosing the adiabatic path

The equivalence between the gate model and the adiabatic model requires access to a large
range of adiabatic paths between H; and Hp, and not simply the linear schedule with
constant speed defined in Eq. 2.4. Several strategies are possible to improve the adiabatic
path.

3.1 Adaptive annealing speed

The first strategy is to keep a linear schedule but vary the speed during the evolution:
H(t) = S(t)Hp + (1 — S(t))H[ (31)

where s(0) = 0 and s(T) = 1. If the gap is known, one can then apply the adiabatic
condition Eq. (2.3) locally and try to have a low speed when the gap is small and a high
speed when the gap is large. This strategy allows for instance to recover the quadratic
speed-up in Grover’s algorithm (Exercise 2.1), by using a schedule defined by the condition

ds
— = A(t)? 3.2
= A) (32)
instead of a constant speed.

For more general problems where the gap is unknown, optimal control methods can be
applied to find the optimal path. Those methods often consist in discretizing the trajectory

and applying either gradient-based (e.g. GRAPE) or gradient-free (e.g. reinforcement
learning) methods to find the trajectory that minimizes the final energy.

3.2 Navigator terms and nonstoquastic Hamiltonians

A second approach to improving the annealing schedule is to add one or several other terms
to the path, sometimes called navigator Hamiltonians. For instance, we could have

H(t) = s(t)Hp + A(t) Huav + (1 — s()) Hr (3-3)
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where s$(0) =0, s(T) = 1 and A\(0) = A(T) = 0. This intermediate Hamiltonian can allow to
explore more regions of the Hamiltonian space, possibly avoiding exponentially vanishing
gaps.

The intermediate Hamiltonian can also be designed to avoid classical simulability.
Indeed, to simulate quantum annealing classically, a common method is the path-integral
Quantum Monte Carlo (QMC) algorithm. However, it can be shown that QMC only
works well when there is no sign problem in the Hamiltonian. A Hamiltonian with no
sign problem, also called stoquastic Hamiltonian, is defined as having only nonpositive
elements in the off-diagonal (with respect the computational basis):

(i|H|j) <0 ifi#j (3.4)

If Hp is an Ising Hamiltonian and Hy = — ", o7, their linear combination will be stoquas-
tic. To create a path that is hardest to simulate, one could add a term of the form:

Hupay Za (3.5)

to the annealing schedule. While there are some evidence that nonstoquastic navigators
can improve the performance of quantum annealers, it has also been shown that adiabatic
quantum computing with no-sign problem is not classically simulable in general. The exact
role of stoquasticity in quantum annealing is still an open problem.

4 Quantum annealers in practice
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Figure 4. Example of Chimera Graph, representing the qubit connectivity on a D-Wave device
[3]. A procedure known as minor embedding can be used to map an arbitrary QUBO instance
on N variables to a Chimera graph on M qubits, where M > N, and often M = O(N?)

When proposed, quantum annealing was seen as a promising avenue towards a first exper-
imental quantum computer with an advantage over classical machines: it does not require
the implementation of fast quantum gates, can tolerate a moderate level of noise, and the
first numerical investigations on optimization problems suggested an improvement com-
pared to classical heuristics. With this in mind, the Canadian company D-Wave started
building quantum annealers as early as 1999 and has reached 5,000 qubits in 2020. How-
ever, the quest for a quantum advantage in optimization problems is still ongoing as of
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2020. One of the reasons is that practical implementations can be far from the ideal model
discussed previously. In particular:

1. The qubit connectivity is often limited, meaning that not every Ising Hamiltonian
can be implemented in the device without a large (polynomial) overhead (see Figure
4). Since QUBO problems on simple graphs are often the easiest to solve numerically,
it can hinders the power of the quantum device.

2. Not every adiabatic paths can be implemented in practice. Historically, D-Wave has
been implementing linear interpolation between the two Hamiltonians, but there is
no guarantee that the optimal path lies in this space.

3. Large levels of noise can be detrimental to the performance of the device.

In light of those limitations, what role could quantum annealing take in the future of
quantum computing? While we do not know yet if quantum annealers will ever be useful
for solving generic optimization problems that arise in real-life applications, their potential
for quantum simulation seem more amenable in the near-term. Recent experiments have
for instance demonstrated a million-fold speed-up compared to classical algorithms for
the simulation of frustrated magnets. Understanding the power of adiabatic quantum
computing is still an open but fascinating question for both theorists and experimentalists,
that has the potential to illuminate important aspects of quantum information.

Summary of Chapter 13: Adiabatic Quantum Computing

¢ Ground state problem: finding the ground state of a Hamiltonian comes
down to solving the optimization problem

min (Y|H
uin (41H]0)
o Ising Hamiltonians are of the form
H = Z JijO'iZO'; + Z hlaf
i,j i
Finding their ground state is equivalent to solving a QUBO problem:
rna;n f(:z:) = Z Qija:ixj

i,j

where z; € {0,1}

¢ Adiabatic theorem: a system will remain in the ground state during a
2

Hamiltonian evolution as long as the time scales as 1/AZ ;| where Ay, is the

minimum gap along the trajectory.

e The adiabatic path has a drastic effect on the solution found by the al-
gorithm. The optimal schedule can be found theoretically or with optimal
control methods.

¢ Practical quantum annealers are often limited by their connectivity, the
lack of freedom in the choice of an adiabatic path and noise.
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History and further reading

The adiabatic theorem dates back to the early days of quantum mechanics. It was first
introduced by Born and Fock in 1928 [4] and put into a more rigorous mathematical ground
by Kato in 1950 [5]. Adiabatic quantum computing was established independently by two
teams, with two different perspectives and two different names. Kadowaki and Nishimori
created quantum annealing in 1998 by analogy with simulated annealing, with the objective
of finding the ground state of an Ising model by exploiting quantum fluctuations [6]. The
idea of using analogue evolution as a quantum computing model originates from Farhi and
Gutmann who found a first analogue version of Grover’s algorithm [7]. They generalized
their approach and linked it to the adiabatic theorem in 2000 [8]. Several proofs of the
equivalence between the two models were established in the following years [9-13]. In
2009, it was shown that AQC fails for random NP-Hard instances due to an exponentially
vanishing gap [14].

Numerical and theoretical evidence that having a nonstoquastic navigator Hamiltonian
in the adiabatic paths can improve a schedule were put forward in [15-17]. In 2020, Hastings
showed that AQC with no sign-problem is not classically simulable in general [18]. A first
experimental demonstration of quantum advantage for condensed matter simulations has
been demonstrated on 1,440 qubits of a D-Wave quantum annealer in 2021, outperforming
classical simulation techniques by six orders of magnitude [19].

Exercise 2.1 is inspired by [1, 20, 21].
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