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Abstract

In this thesis, we use the belief propagation decoder to evaluate the threshold

of several types of 3D topological codes under a biased noise model. More

precisely, we consider both a cubic and a rhombic lattice, and introduce defor-

mations of their stabilizers with the objective of improving the performance

of those codes in the biased regime. We show that combining this choice of

stabilizers with the belief propagation decoder increases the threshold of the

3D toric code with a cubic lattice from 22% to more than 36% under a highly

biased noise model. For the rhombic lattice, we show that the standard de-

formation procedure does not improve its threshold. However, simply using a

highly biased noise model on the original rhombic code increases the threshold

from 1.6% to 28%, even for a modest bias ratios of 30.
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Chapter 1

Introduction

1.1 Motivation

When the concept of a quantum computer was first proposed and formalized in

the 1980s and 1990s [1, 2, 3], many physicists were skeptical that those devices

would one day see the light of day. As an example, Haroche and Raimond

famously said in an article that appeared in 1996 in Physics Today that “the

large-scale quantum machine, though it may be the computer scientist’s dream,

is the experimenter’s nightmare.”. The reason for their skepticism is the inher-

ent fragility of quantum states: any noise present in a quantum system, due

for instance to unwanted interactions with the environment, can irreversibly

destroy the state. The invention of the first quantum error-correcting codes

[4, 5], and with them of threshold theorem, changed the game: there exist some

families of quantum codes that can correct arbitrary errors by increasing the

number of redundant qubits, as long as the noise level of the system is below

a certain threshold.

While those first quantum codes served as a useful proof of concept, their

threshold was estimated to be around 10−6 [6], which was far below the exper-

imental capabilities of the time. The introduction of the stabilizer formalism

in 1998 [7] revolutionized quantum error-correction and led to the invention of

the toric code [8, 9], whose two-dimensional instance, the surface code, has a

threshold over 1% in realistic settings [10].
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While the surface code remains today one of the most promising archi-

tectures for a first generation of fault-tolerant devices, it has the downside to

require a large qubit overhead to perform universal quantum computation with

it. On the other hand, its three-dimensional generalization, the 3D toric code,

has recently been shown to be better suited for universal quantum computing:

it has a natural implementation of non-Clifford gates such as the Toffoli gate

[11]. However, constructing a 3D architecture in practice is experimentally

challenging, and recent work has shown that taking all the characteristics of

the code into account, building a 3D toric code might be more costly than its

2D version [12].

Meanwhile, recent experimental advances have allowed to gain new in-

sights on the nature of quantum noise. While most quantum error-correcting

codes had been designed and evaluated with the assumption that noise was

symmetric, i.e. that bit-flip errors occur as frequently as phase-flip errors, ex-

periments on superconducting qubits [13, 14, 15], trapped ions [16] and quan-

tum dots [17] have shown that noise is actually often biased towards one type

of errors. For instance, in Kerr-cat cubits, phase-flip errors can occur 100 times

more frequently than bit-flip errors [18].

Under this new assumption, small modifications of the surface code have

been proposed that have boosted the threshold of the code with realistic bias

levels [19, 20, 21, 22]. The latest of those new codes tailored for biased noise,

the XZZX surface code, has improved the threshold from around 11% to

around 40% for the realistic bias ratio of 100 (reached by Kerr-cat qubits)

[22]. Those codes are constructed by deforming the stabilizers of the original

surface code, meaning that the operators used to detect errors, called stabiliz-

ers, are rotated in a certain way to form new stabilizers.

In this work, we aim to answer the following question: can the 3D toric

code be improved under biased noise by deforming its stabilizers? If a signifi-

cant improvement is discovered, new comparisons with the surface code must

be performed, similar to the one described in Ref. [23], in order to re-evaluate
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the 3D code in realistic settings, with the potential to rehabilitate it as a

practically relevant error-correcting code.

1.2 Objectives
The objective of this project is to propose a new variant of the 3D toric code

with deformed stabilizers and evaluate it under a biased noise model, hoping to

improve the performance. Similarly to the 2D case with the recently proposed

XZZX code, the new stabilizers must provide an advantage in the biased noise

regime, such as reducing the dimensionality of the decoding problem. Since

the 3D toric code can come in many different flavors, we will restrict our

attention to two lattice types—cubic and rhombic—and to periodic boundary

conditions. The project can be divided into three main steps:

1. Designing the new stabilizers

2. Numerically evaluating the threshold of the new code under several bi-

ased noise models, for both the cubic and the rhombic lattice, using a

decoder with high performance.

3. Theoretically computing the threshold—using statistical mechanical

models—whenever it is possible

This project is part of an international collaboration comprising four other

researchers: Eric Huang (University of Maryland), Michael Vasmer (Perimeter

Institute), Christopher Chubb (Université de Sherbrooke) and Arpit Dua (Yale

University). Before I joined, preliminary work had already been done: some

deformed stabilizers were designed for the cubic lattice and evaluated using

a specific decoder called the SweepMatch decoder, showing improved perfor-

mance compared to the original toric code: from 15% to 21% for highly biased

noise with a ratio over 100. However, recent work has shown that another

decoder—the BP-OSD decoder (Belief Propagation with Ordered Statistics

Decoding)—performs better than SweepMatch for the 3D homological prod-

uct code [24]. I was therefore given the first task to implement and evaluate this
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decoder on the cubic lattice in the regimes of interest, with both the regular

and the deformed stabilizers. A second task would then be to design stabi-

lizer deformations for the rhombic code, and evaluate the new code using the

best-performing decoder. Finally, we would all look at statistical mechanical

models to try to derive the threshold of the deformed code in theory.

1.3 Contributions
During the three months of this project, I achieved the following tasks:

1. I implemented a fast BP-OSD decoder in Python and integrated it into

the library bn3d developed by the collaboration

2. I evaluated the threshold of the BP decoder for the cubic lattice, and

showed a significant performance improvement compared to the Sweep-

Match decoder, e.g. from 15% to 22% for the undeformed code and from

22% to more than 36% for the deformed code, under a noise model fully

biased towards phase-flip errors.

3. I implemented the rhombic lattice and its deformation, and integrated it

in bn3d. I evaluated its threshold under biased noise, showing a threshold

gain from 1.5% with no bias to 28% with maximal bias. However, the

proposed deformation did not improve the code.

4. I developed a graphical interface to visualize and manipulate 3D codes,

noise models and decoders, gaining more intuition on those codes as a

result and simplifying the debugging process.

The evaluation of the theoretical threshold using analogies from statistical

physics is left as future work.

1.4 Outline
In the following part of this thesis, Section 2, we will give some background on

quantum error correction, biased noise and 3D toric codes, including a review of

the relevant literature. We will then present our method and results in Section
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3, including a presentation of the stabilizer deformations we introduced, the

threshold results we obtained and a tour of the graphical interface. Finally,

we will conclude this thesis and discussed future work in Section 4.



Chapter 2

Background

2.1 Classical error correction
Before discussing quantum error correction, we will first review the basics of

classical error correction. After having defined some general concepts of error

correction, we will dive into the theory of linear codes.

2.1.1 General setting
Let us consider the following setting: we would like to send a 𝑁-bit message

x across a noisy channel. If we choose to send x directly without any pre-

processing, a different result x̃ will arrive with a certain number of errors, i.e.

flipped bits. To protect the message against bit-flip errors, we can choose to

add redundancy to it, for instance by sending each of its bits three times: 0

becomes 000 and 1 becomes 111. Assuming that at most one error can occur

on each triplet, the original message can be decoded by taking a majority vote,

e.g. 010 is decoded as 0. The message y= xxx that we send across the channel

is called an encoding of x. More generally, an error-correction process can be

summarized with the following diagram:

x
encoding
−−−−−→ y

noise
−−−→ ỹ

decoding
−−−−−→ x̃

Let us now introduce some important jargon. A codeword is an element

in the image of the encoding process. For instance, in the code discussed

above—called the 3-repetition code—, we have two codewords: 000 and 111.
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The distance of a code is the minimum number of bit-flips required to pass

from one codeword to another, or in other words, the minimum number of

errors that would be undetectable with our code. For instance, the distance

of the 3-repetition code is 3 (we need to flip all 3 bits to have an undetectable

error). A code that encodes 𝑘 bits with 𝑛 bits and has a distance 𝑑 is called

an [𝑛,𝑘,𝑑]-code. The 3-repetition code is an example of [3,1,3]-code. More

generally, an 𝑛-repetition code (consisting of 𝑛 repetition of each bit) is a

[𝑛,1,𝑛]-code. Finally, the rate of an [𝑛,𝑘,𝑑]-code is defined as 𝑅 = 𝑘/𝑛.

While the 𝑛-repetition code family has a high distance, we see that it has a

low rate 𝑅 = 1/𝑛, which asymptotically goes to 0 when 𝑛→∞, making those

codes impractical as they require a high number of redundant bits to encode

a single bit.

2.1.2 Parity-checks and Hamming code
In 1950, Richard Hamming discovered a more intelligent way to introduce

redundancy in a message than having to repeat it several times [25]. To illus-

trate his method, let us consider a 4-bit message x = 𝑎𝑏𝑐𝑑, as well as the three

variables

𝑧1 = 𝑎⊕𝑏⊕𝑑

𝑧2 = 𝑎⊕𝑐⊕𝑑

𝑧3 = 𝑏⊕𝑐⊕𝑑

where ⊕ denotes a XOR operation (addition modulo 2). Those are called

parity-check bits, as they indicate the parity of the sum (0 for even and 1 for

odd). If we now send the 7-bit message y = 𝑎𝑏𝑐𝑑𝑧1𝑧2𝑧3, any single-bit error

will be correctable. Indeed, let’s see what happens if an error occurs only

on bit 𝑎. In this case, both 𝑎⊕𝑏⊕𝑑 and 𝑎⊕𝑐⊕𝑑 will be different from 𝑧1
and 𝑧2, while the value of 𝑧3 will remain at 𝑏⊕𝑐⊕𝑑. This can only happen

if 𝑎 is flipped, which allows us to correct the error. A similar reasoning can

be performed for the other bits. This code, called the Hamming code, is a
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[7,4,3]-code with a rate 𝑅 = 4/7 ≈ 0.57, which is already better than the rate

𝑅 ≈ 0.33 of the 3-repetition code, for a similar distance.

2.1.3 Linear codes
This idea of transmitting both the message and some parity-check bits can be

generalized with the notion of linear code. A linear code consists in using a

matrix G—called generator matrix—as our code, i.e.

y = Gx. (2.1)

If our message x has length 𝑘 and is complemented by 𝑚 parity checks, such

that 𝑛 = 𝑘+𝑚 is the size of y, we can often write G as

G =
⎛⎜⎜⎜
⎝

I𝑘

A

⎞⎟⎟⎟
⎠

(2.2)

with I𝑘 the 𝑘×𝑘 identity matrix (used to reproduce the message in the code)

and A an 𝑚×𝑘 matrix that performs the parity checks. In this notation,

all the matrix operations are performed modulo 2, i.e. in the field ℤ2. For

instance, the generator matrix of the Hamming code can be written

G =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 0 1

1 0 1 1

0 1 1 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.3)

A visual way to construct the generator matrix is through the Tanner

graph of the code. The Tanner graph is a bipartite graph containing two

types of nodes, the data nodes (one for each bit of the original message) and

the check nodes (one for each parity check). A check node 𝑖 and a data node
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Figure 2.1: Tanner graph of the Hamming code. The top nodes represent the bits

of the message and the bottom nodes the parity checks, with an edge

whenever a bit is involved in a parity check.

𝑗 are connected if the parity check 𝑧𝑖 depends on 𝑥𝑗. Figure 2.1 represents

the Tanner graph of the Hamming code. The generator matrix can then be

constructed by setting A (its non-identity part) to the adjacency matrix of

the Tanner graph, i.e. it has a 1 at row 𝑖 and column 𝑗 if the check node 𝑖 is

connected to the data node 𝑗, and 0 otherwise.

An equivalent picture to describe linear codes is through the parity-check

matrix, defined as an 𝑚×𝑛 matrix H such that

Hy = 0 (2.4)

if and only if y is a codeword. If the generator matrix is given by Eq. (2.2),

the corresponding parity-check matrix can then be constructed as

H = (A I𝑚) (2.5)

The parity-check matrix gives a convenient method to detect and correct errors.

Indeed, if ỹ = y+ e is the received message disturbed by an error vector e,

applying the parity-check matrix to ̃y gives

Hỹ = H(y+e)

= He
(2.6)

The new vector s = He has dimension 𝑚 and is called the syndrome. Each

component 𝑠𝑖 of the syndrome is equal to 1 if the parity-check equation 𝑖 is
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violated. Decoding a message then consists in finding the most probable error

e that has yielded to the syndrome s.

An important class of linear codes are the low-density parity-check

(LDPC) codes, introduced by Gallager in 1962 [26], but forgotten until a re-

newed wave of interest since the 1990s due to the improvement of decoding

methods [27]. LDPC codes are defined as linear codes with a sparse parity-

check matrix: each parity check only involves a constant number of data bits,

and each data bit is only involved in a constant number of parity checks. The

quantum version of LDPC codes has also gained traction recently [28] and we

will consider those codes when discussing about belief propagation in Section

2.5.

2.2 Quantum error correction

Generalizing classical error correction to the quantum domain is not an easy

task. Indeed, let us consider a 1-qubit state |𝜓⟩ = 𝑎|0⟩+ 𝑏|1⟩ going through

a noisy quantum channel. Contrary to classical channels where errors can be

modelled by a series of bit-flips, our quantum state can in principle be deformed

in infinitely many ways. Moreover, measuring the state changes it, so one must

be careful about what exactly to measure in order to gain information on some

potential errors. To solve those challenges, a clever formalism for quantum

error correction was proposed at the end of the 1990s: the stabilizer formalism.

With this formalism in hand, it became possible to construct an important

family of quantum error-correcting codes, known as topological codes, and

which includes the 2D and 3D toric codes studied in this thesis.

After having reviewed some general notions of quantum error correction

and noise models, we will introduce the stabilizer formalism and show how

it can help to design error-correcting codes. We will then define topological

codes, with an accent on the 2D toric code. Finally, we will give a short review

on the existing decoding techniques for topological codes.
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2.2.1 General setting
In any quantum algorithm, a state |𝜓⟩ is generated at each cycle of the quantum

device. However, noise can alter this state with a certain probability, giving a

state ∣ ̃𝜓⟩ instead. Similarly to the classical case, any quantum error-correction

process can be summarized by four main steps:

1. Encode the logical state |𝜓⟩ as a physical state |𝜓⟩𝐸 defined on more

qubits.

2. Detect whether an error has occurred by performing measurements on

the physical state ∣ ̃𝜓⟩
𝐸

without altering the state.

3. Decode the measurement results and propose a correction operator

4. Compute gates on the logical state by redefining a universal gate set

on the code.

In this thesis, we will mostly focus on the first three steps. Those can be

described by the following process:

|𝜓⟩
encoding
−−−−−→ |𝜓⟩𝐸

noise
−−−→ ∣ ̃𝜓⟩

𝐸

decoding
−−−−−→ |𝜓⟩

The vector space of all encoded states |𝜓⟩𝐸 is called the code space. The

distance of a code is the minimum number of qubits that need to be acted on

(e.g. with an error) to go from one state of the code space to another. A code

that encodes 𝑘 logical qubits with 𝑛 physical qubits and has a distance 𝑑 is

called an [[𝑛,𝑘,𝑑]]-code. Finally, we define a logical operator as an operator

that can change logical state of the code.

Before looking at different encoding and decoding methods, we first need

to review how quantum noise works.

2.2.2 Noise in a quantum computer
The first challenge with quantum error-corrections is that noise can take a large

variety of shapes. In the most general way, a noise process can be modelled by

a quantum channel 𝒩 acting on 𝑛 qubits. However, quantum error-correcting

codes are usually studied with two more assumptions on this channel:
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1. It is separable: noise acts independently on each qubit:

𝒩(𝜌) =𝒩1(𝜌)⊗ ...⊗𝒩𝑛(𝜌) (2.7)

2. It is incoherent (or stochastic): an operator is applied randomly to

each qubit with a certain probability. In general, single-qubit incoherent

errors can be modelled by a Pauli channel:

𝒩𝑖(𝜌) = (1−𝑝)𝜌+𝑝(𝑟𝑋X𝜌X+𝑟𝑌Y𝜌Y+𝑟𝑍Z𝜌Z) (2.8)

where 𝑟𝑋+𝑟𝑌+𝑟𝑍 = 1. It means that at each cycle, a Pauli error 𝑃 ∈

{X,Y,Z} acts on our qubit with a probability 𝑝 ⋅ 𝑟𝑃.

Since 𝑌 = 𝑖𝑋𝑍 consists in applying both 𝑋 and 𝑍 consecutively, all our quan-

tum errors can in fact be decomposed into only two types of errors:

Bit-flips: |𝜓⟩⟶ X |𝜓⟩

Phase-flips: |𝜓⟩⟶ Z |𝜓⟩

A common example of Pauli channel is the depolarizing channel, which assigns

equal probability 𝑝/3 to all three Pauli operators:

𝑟𝑋 = 𝑟𝑌 = 𝑟𝑍 = 1
3

In this thesis, we will mostly be interested in biased noise models, in which

one of the three Pauli operators occur with a higher probability than the other

two. For instance, in the pure Z noise model, 𝑟𝑋 = 𝑟𝑌 = 0 and 𝑟𝑍 = 1. We will

discuss biased noise models in more details in Section 2.3

2.2.3 Illustrative example: the repetition code
Let us start with an illustrative example: the generalization of the 3-repetition

code to the quantum domain. Let us encode the state |0⟩ with |000⟩𝐸 and the

state |1⟩ with |111⟩𝐸. Therefore, a general 1-qubit state |𝜓⟩ = 𝑎|0⟩+ 𝑏|1⟩ is

encoded as

|𝜓⟩𝐸 = 𝑎|000⟩+𝑏|111⟩ , (2.9)
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and 𝒞= {𝑎|000⟩+𝑏|111⟩ ∶ 𝑎,𝑏 ∈ ℂ, |𝑎|2+|𝑏|2 =1} defines the code space of our

repetition code. For simplicity, let us first consider the effect of 𝑋 errors on the

code. We can notice that in this case, the distance of the code is 3: applying the

operator X1X2X3 turns the state 𝑎|000⟩+𝑏|111⟩ into 𝑎|111⟩+𝑏|000⟩ which is

still in the codespace. Conversely if a bit-flip occurs on only one or two qubits,

the state will leave the code space and the error can be in principle detected.

In order to detect and correct those bit-flip errors, it is not possible any-

more to simply look at the state and apply a majority vote. However, we can

measure the parity of each pair of qubits and verify that there is always an even

number of 1. This can be done using the three operators 𝑆1 = Z1Z2, 𝑆2 = Z2Z3

and 𝑆3 = Z1Z3. Indeed, those operators commute and can therefore be mea-

sured simultaneously. Moreover, if we measure one of the stabilizers Z𝑖Z𝑗, we

will obtain +1 if the qubits 𝑖 and 𝑗 are the same, and −1 otherwise. Measuring

those three operators hence tells us if the three physical qubits are the same,

or in other words, if the state is in the codespace. For instance, those three

operators applied to the state |𝜓⟩ = |001⟩ gives us {𝑠1 = 1,𝑠2 =−1,𝑠3 =−1}.

This indicates an error probably occurred on the third qubit, since only the

first two qubits have an even parity and are therefore identical.

2.2.4 Stabilizer formalism
The stabilizer formalism generalizes the intuition developed in the previous

example, by giving a general framework to detect errors without disturbing

the state, generalizing at the same time the parity-check picture that we saw

in the previous section.

Let us start with some defintions. The 𝑛-qubit Pauli group 𝒫𝑛 is the

(multiplicative) group generated by all tensor products of Pauli elements:

𝒫𝑛 = {𝑎𝑃1⊗...⊗𝑃𝑛|𝑃𝑖 ∈ {I,𝑋,𝑌 ,𝑍},𝑎 ∈ {1,−1,𝑖,−𝑖}} (2.10)

An element of the Pauli group is called a Pauli operator. The weight of

a Pauli operator is the number of non-identity elements in it. For instance,

XIIZ = X1Z4 ∈ 𝒫4 has weight 2.
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The stabilizer group 𝒮 of an [[𝑛,𝑘,𝑑]]-code with a code space 𝒞 is a

subgroup of 𝒫𝑛 such that

1. All the elements of 𝒮 commute

2. For each 𝑛-qubit state |𝜓⟩, |𝜓⟩ ∈ 𝒞⟺∀𝑆 ∈ 𝒮,𝑆|𝜓⟩ = |𝜓⟩.

The first property means that we can measure all the stabilizers simultaneously.

The second property means that measuring a state with a stabilizer does not

disturb it, and returns 1 if we are still in the codespace. On the other hand,

if an error 𝑃 ∈ 𝒫𝑛 of weight below the distance 𝑑 occurs, some of stabilizer

measurements will return −1. In the repetition code introduced above, the

stabilizer group is given by 𝒮 = {I,Z1Z2,Z2Z3,Z1Z3}.

Finally, we call the result of all the stabilizer measurements is called the

syndrome. For instance, measuring the stabilizers for the state |𝜓⟩ = |001⟩ in

the repetition code gives the syndrome (1,−1,−1). Moreover, each stabilizer

equal to −1 is called an excitation.

A convenient way to describe a code and its stabilizers is through the

quantum parity-check matrix, a straightforward generalization of its clas-

sical counterpart. To write the parity-check matrix from a stabilizer code, we

start by constructing its Tanner graph. Like the classical Tanner graph, the

quantum one is still a bipartite graph with two types of node, stabilizers and

qubits, but qubit nodes now appear twice: once to represent 𝑋 errors and

once for 𝑍 errors. There is an edge between a stabilizer node 𝑆𝑖 and a qubit

node 𝑞(X)
𝑗 (resp. 𝑞(Z)𝑗 ) if the stabilizer 𝑆𝑖 acts non-trivially on qubit 𝑞𝑗 with the

operator X (resp. Z). The parity-check matrix is then the 𝑚×2𝑛 adjacency

matrix of the Tanner graph, with stabilizers in rows and qubits in columns.

By convention, the first 𝑛 columns represent qubits of type 𝑍 and the last 𝑛

columns qubits of type 𝑋 .

A particularly useful family of stabilizer codes is the class of CSS codes

(named after Calderbank, Shor and Steane). Those are codes which contain

two types of stabilizers: the X stabilizers (made entirely of X and I operators)
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(a) Vertex and face stabilizers (b) Detection of X and Z errors

Figure 2.2: (a) Original surface code. Edges are qubits, and we define two types

of stabilizers: plaquette stabilizers, made of Z operators around each

face, and vertex stabilizers, made of X operators around each vertex.

(b) Chains of errors excite the stabilizers at their boundary

and the Z stabilizers (made entirely of Z and I operators). In other word, no

stabilizer mixes both X and Z operators. CSS codes are characterized by a

parity-check matrix of the form

H =
⎛⎜⎜⎜
⎝

H𝑍 0

0 H𝑋

⎞⎟⎟⎟
⎠

(2.11)

with H𝑋H𝑇
𝑍 = H𝑍H𝑇

𝑋 = 0 to ensure that the commutation conditions are

fulfilled.

2.2.5 Topological codes
With the stabilizer formalism at hand, we are now ready to introduce the family

of quantum error-correcting codes considered in this thesis: the topological

codes. The most common example of topological code is the 2D toric code,

also called surface code, and we will use it as an illustrative example.

In the surface code, we place the physical qubits on the edges of a 2D

lattice with periodic boundary conditions, as illustrated in Figure 2.2a. Topo-

logical codes are constructed differently than before: rather than starting with
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(a) Trivial loop (b) Non-trivial loop

Figure 2.3: Decoding problem: a chain of errors (red squares) produces a given

syndrome (purple circles). The goal of decoding is to propose a cor-

rection (red circles) that fit the syndrome without creating a logical

operator. (a) Correction that results in a stabilizer: the original state

is recovered (b) Correction that results in a logical operator: the log-

ical state is modified

a code space and constructing its stabilizer group, we start by constructing

the stabilizers. The surface code is a CSS code, and has therefore two types

of stabilizers: vertex stabilizers—defined on each vertex as the product of X

operators on the adjacent qubits—, and plaquette stabilizers—defined on each

face as the product of Z operators on the bordering qubits. Those opera-

tors commute, as either zero or two X and Z operators intersect between the

different stabilizers.

What happens when the surface code is subjected to Z errors? We can

consider all Z errors as a set of strings on the lattice. Since plaquette operators

are made only of Z operators, they will all commute with our errors. On the

other hand, if we measure vertex operators, we can observe that only the two

ends of each string will be detected by vertex operators, since boundary vertices

are the only ones that intersect with the errors on an odd number of qubits

(exactly one). The picture for X errors is very similar, with strings of parallel
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qubits instead of adjacent qubits, and plaquette instead of vertex operators.

An illustration of this process is given in Figure 2.2a.

We can now wonder what happens when a string of errors form a loop?

There are two possibilities: either the loop does not go around the torus—we

say that the loop is trivial—or it does. In the first case, the physical error

will not result in a logical error, since trivial loops of Z or X errors can be

constructed as products of plaquette or vertex operators, and are therefore

stabilizers themselves. Therefore, strings of errors that go around the torus

will be the only undetectable errors. If we denote 𝐿 the size of the lattice, the

shortest non-trivial loop has length 𝐿, and the distance of the code is therefore

𝑑 = 𝐿. As non-detectable errors, non-trivial loop can also be seen as logical

operators.

The surface code can be generalized to higher dimensions, including the

3D toric code that we will discuss in Section 2.4, and to different boundary

conditions [29]. More generally, topological codes can be defined by the cellula-

tion of any n-dimensional manifold, not only a torus. For instance, topological

codes have been defined on hyperbolic manifolds [30], Möbius strips [31], and

more. Techniques from algebraic topology then allow to deduce the property

of a given topological code from the topological properties of its underlying

manifold [32].

2.2.6 Decoding the surface code

As we have seen, errors in the surface code come in chains, creating a pair

of excitations at the two ends of each chain. The decoding problem consists

in taking all those pairs as input, and returning a correction operator that

matches them. As illustrated in Figure 2.3, applying such a correction has two

possible consequences: either the combination of the errors and the correction

forms a trivial loop, or it goes around the torus. In the first case, we obtain a

stabilizer and the original state is recovered. In the second case, we obtain a

logical operator, thereby introducing a logical error.

For a given noise model, the optimal decoding strategy—called maximum
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(a) Error syndrome (b) Equivalent graph problem

Figure 2.4: Illustration of the minimum-weight perfect matching decoder. (a) Ob-

served syndrome, with excitations in purple. (b) Corresponding graph,

where each edge is weighted by the minimum distance between two ex-

citation. The solution, which has a cost of 5, is highlighted in red.

likelihood decoding—consists in finding the coset of errors e ⋅ 𝒮 (modulo the

stabilizer set 𝒮) that fits the syndrome and has the highest probability [8]:

max
e

𝑃(e ⋅ 𝒮|He = s) (2.12)

where s is the syndrome and H the parity-check matrix. Using this decoder

on the surface code with a depolarizing noise model gives an optimal threshold

of 18.9% [33]. However, the maximum-likelihood decoder is known to be NP-

Hard, as the number of possible errors increases exponentially with the size

of the code, and calculating the maximum involves in general to go through

all of them.

Many alternative decoders with a lower computational complexity have

been proposed in the literature. One of the most commonly used, known as

the minimum-weight perfect matching (MWPM) decoder, solves the problem

of pairing excitations [8]. If we define the weight of an error as the number

of qubits it affects, the MWPM decoder works under the assumption that the

most likely pairing is the one that minimizes the total error weight. With
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this assumption, we can see the decoding problem as a graph problem. Let us

construct a complete graph, where nodes are excitations and an edge between

two excitations 𝑠𝑖 and 𝑠𝑗 is given by the 𝐿1 distance between 𝑠𝑖 and 𝑠𝑗. The

objective is then to match all the nodes such that the sum of the selected

edges is minimal, as illustrated in Figure 2.4. This problem is well-known in

the graph theory community and can be solved in polynomial time using for

instance the Edmond’s algorithm [34]. Despite this efficiency gain compared

to the maximum-likelihood decoder, this algorithm has multiple drawbacks:

its complexity scales as 𝒪(𝑁3), which is still too slow to be used in practice,

and it has a relatively low threshold compared to other decoders [35].

Apart from the MWPM decoder, several other decoders compete as fast

and accurate decoders for the surface code. Some decoders are directly trying

to approximate the likelihood function, using for instance Monte-Carlo algo-

rithms [36, 37, 38] or belief propagation [39, 40, 35, 41, 42]. Some are exploiting

the locality and symmetries of the surface code by using an algorithm based on

the renormalization group [43, 44]. Some are using artificial neural networks

as a way to learn the mapping syndrome → errors from data [45, 46, 47, 48].

Finally, other graph formulations of the decoding problem have been proposed,

and in particular one based on the union-find data structure, which allows fast

decoding of the surface code [49, 50].

2.3 Biased noise and stabilizer deformations

2.3.1 Biased noise

Until recently, most quantum error-correcting codes were evaluated under sim-

ple noise models where the probability of X and Z errors are the same. How-

ever, experiments have been showing over the years that those two types of

error can have a highly different probability in practice, or in other words,

noise is biased. For instance, phase-flip errors occur with a higher probability

than bit-flip errors in superconducting qubits [13, 14, 15], trapped ions [16]

and quantum dots [17].
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As discussed in Section 2.2.2, any Pauli noise model can be parametrized

by a vector (𝑟𝑋, 𝑟𝑌, 𝑟𝑍) where 𝑟𝑋, 𝑟𝑌, 𝑟𝑍 ≥ 0 and 𝑟𝑋 + 𝑟𝑌 + 𝑟𝑍 = 1. Those

configurations form a simplex, represented in Figure 2.5. For example, the

point (13 ,
1
3 ,

1
3) at the center represents a depolarizing noise model (no bias),

while the three corners (1,0,0), (0,1,0), (0,0,1) represent fully-biased noise

models (toward X, Y or Z respectively).

Following the convention of [20], we parametrize biased noise on each axis

by a single parameter 𝜂, called the bias ratio. For instance, for Z-biased noise,

we define

𝜂𝑍 = 𝑟𝑍
𝑟𝑋+𝑟𝑌

(2.13)

such that 𝜂𝑍 = 0.5 when there is no bias, and 𝜂𝑍 →∞ for full Z-bias.

Many modifications of existing error-correction procedures have been pro-

posed to tackle biased noise, often leading to a significant increase of the thresh-

old in this regime [22, 51, 52, 21, 19, 20, 53]. For instance, in Ref. [52], the

authors propose to adapt the frequency rates of X and Z corrections to the

rates of X and Z errors, correcting more frequently the most common error

type. In Refs. [54, 51, 55], asymmetric codes are proposed to correct X and

Z errors in a different way, often with a larger distance for the most common

error type.

More recently, simple changes to the surface code stabilizers have been

proposed to improve its performance under biased noise. For instance, Ref.

[19] proposed to change the vertex stabilizers in the Z-biased regime, replacing

Z by Y operators, such that Z errors activate both types of stabilizers. The

idea behind this transformation is that, when Z errors are predominant, more

information becomes available for decoding them. We will call such modifica-

tions of the surface code stabilizer deformations. In Ref. [20], the authors

show that this new surface code has a threshold of 50% for pure Z noise,

and that taking the two dimensions of the lattice to be coprime lead to large

improvement of the logical failure rate. In a more realistic regime where Z

errors are 100 times more prominent than X errors, Ref. [21] shows that the
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Figure 2.5: Simplex of Pauli noise models. The center corresponds to depolarizing

noise, while the three corners correspond to fully-biased noise models.

Each red line parametrizes biased noise in one of the three directions,

using a scalar 𝜂 varying from 0.5 to ∞.

threshold can be improved by 5% compared to the undeformed surface code.

The authors obtain those results using a new decoder tailored to this new

code. Finally, a different deformation of the surface code, called the XZZX

surface code, has recently been proposed, leading to an even higher gain in

performance [22]. Since the work of this thesis is highly inspired by this new

deformation, we will talk about it in detail in the next section.

2.3.2 The XZZX deformation

The XZZX surface code consists in applying a Hadamard operation on a chosen

axis of all the stabilizers. The resulting stabilizers, represented in Figure 2.6a,

are each made of two X and two Z operators. As a consequence, errors are

detected in different way as the original surface code, as shown in Figure 2.6b.

Plaquette stabilizers detect horizontal chains of Z errors and vertical chains

of X errors, while vertex stabilizers detect horizontal chains of X errors and

vertical chains of Z errors. Therefore, what used to be arbitrary chains in the

2D surface code are now one-dimensional chains.

Let us see the consequences for pure Z noise: vertical and horizontal errors

are now detected with different types of stabilizers, and are therefore decoded
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(a) Vertex and face stabilizers (b) Detection of X and Z errors

Figure 2.6: (a) XZZX surface code. Plaquette and vertex stabilizers are defined

with a combination of X and Z. (b) As a result, X errors only lead to

vertical chains and Z errors to horizontal chains, making the decoding

process easier under biased noise

independently. Moreover, pairs of excitations now lie on a straight line, con-

siderably simplifying the decoding problem. In other words, for pure Z noise,

decoding the XZZX surface code is equivalent to decoding 𝑗 + 𝑘 repetition

codes (where 𝑗 and 𝑘 are the dimensions of the lattice). Since repetition codes

have a 50% threshold [20], it follows that the XZZX code has a threshold of

50% under pure 𝑍 noise.

2.3.3 Deformed noise models

There is an alternative way to look at deformations, that tends to simplify

both their theoretical analysis and their numerical implementation. Instead of

applying deformations at the stabilizer level, we can apply them at the noise

level. For example, in the XZZX surface code, applying a Hadamard to each

stabilizer on the vertical axis is equivalent to applying a Hadamard to each

vertical error. More formally, a Pauli noise channel given by

𝒩(𝜌) = (1−𝑝)𝜌+𝑝(𝑟𝑋𝑋𝜌𝑋+𝑟𝑌𝑌 𝜌𝑌 +𝑟𝑍𝑍𝜌𝑍) (2.14)
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(a) Vertex stabilizer (b) Face stabilizers

Figure 2.7: Stabilizers of the 3D toric code with a cubic lattice

on each qubit, stay the same on every horizontal qubits but becomes

𝒩(𝜌) = (1−𝑝)𝜌+𝑝(𝑟𝑋𝑍𝜌𝑍+𝑟𝑌𝑌 𝜌𝑌 +𝑟𝑍𝑋𝜌𝑋) (2.15)

on every vertical qubits.

Theoretically, it means that we can analyze the XZZX surface code just

like the original surface code, but with a modified noise model. In practice,

it means that we can reuse existing numerical implementations of the surface

code, simply changing the noise model when evaluating the threshold.

2.4 3D toric codes
The 3D toric code is the generalization of the surface code on a three-

dimensional torus. Many types of lattices have been proposed for the 3D

toric code, each coming with a different set of stabilizers [56, 57]. In this work,

we consider the two most common lattice types for the 3D toric code: the

cubic and the rhombic lattices.

2.4.1 Cubic lattice
The construction of the 3D toric code with a cubic lattice follows a similar

pattern as the surface code: we place qubits on the edges of a 3D grid with

period boundary conditions. We then define two types of stabilizers: vertex

stabilizers, defined at each vertex by six Z operators around that vertex, and

face stabilizers, defined at each face by four X operators around that face [56].

The resulting stabilizers are represented in Figure 2.7.
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Figure 2.8: Error detection in the 3D toric code with a cubic lattice: chains of

X errors still activate stabilizers at the boundary of each chain, but

membranes of parallel Z errors activate a loop of stabilizers around the

chain. See also Figure 2.9 for a different graphical representation of

those errors.

Let us observe what happens when errors occur. Similarly to the surface

code, chains of X errors are detected by vertex stabilizers at their two extrem-

ities: they form the so-called point sector. On the other hand, Z errors are

detected differently: membranes of parallel Z errors are detected by face sta-

bilizers forming a loop around that membrane, as represented in Figures 2.8

and 2.9: they form the so-called loop sector.

The logical operators of the cubic code are represented in Figure 2.10.

There are three logical X and three logical Z, one for each axis of the cube.

The logical X are the chains going around the torus, while the logical Z are

membranes forming a cross-section of the torus. Therefore, if all the dimensions

of the lattice are equal to 𝐿, the cubic code is a [3𝐿3,3,𝐿]-code. However,

contrary to the surface code, the Z-distance and the X-distance are this time

different: while the X-distance is 𝐿, the Z-distance is higher and equal to 𝐿2.

For this reasons and the fact that Z errors are detected by four faces (instead

of two vertices for X errors), we can expect the 3D toric code to perform better

under Z-biased noise than X-biased noise.
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(a) Vertex stabilizer (b) Face stabilizers

Figure 2.9: Stabilizers of the 3D toric code with a cubic lattice: chains of X errors

(red) are detected at the boundary vertices, and chains of Z errors

(blue) are detected by a loop of faces

The reader might wonder what makes the 3D toric code attractive. In-

deed, 3D quantum architectures are notoriously hard to build, and the global

distance of the code has a worst scaling than the surface code. However, its

main advantage can be seen when trying to design a fault-tolerant gate set for

the code [11]. Contrary to the surface code which requires resource-intensive

techniques such as magic state distillation to obtain a universal gate set, uni-

versality can be reached at a lower cost (using transversal gates) with the 3D

code. There is therefore a trade-off between universality and the other charac-

teristics of the two codes. This trade-off has been studied in detail in Ref [12],

showing that 3D codes do not have a clear advantage compared to 2D codes

when taking everything into account. The hope of our project is to lead to a

reevaluation of this cost when the noise is biased.

2.4.2 Rhombic lattice

The rhombic lattice can be constructed by placing qubits on the edges of a

3D grid with even dimensions. As usual, we build two types of stabilizers:

the cube stabilizers, defined on every other cubes of the lattice by placing Z
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(a) Cubic code (b) Rhombic code

Figure 2.10: Logical operators in cubic and rhombic lattices. (a) In the cubic lat-

tice, the three X logical operators are formed by chains of X operators

going around the 3D torus along one of the three axis. The three Z

logical operators consist in membranes of parallel Z operators. (b)

In the rhombic lattice, the three X logical operators are formed by

membranes of adjacent X operators. The three Z logical operators

are made of chains of parallel Z operators.

operators on the twelve edges around that cube, and the triangle stabilizers,

defined on each vertex of the remaining cubes as the three X operators around

that vertex inside the cube. Those stabilizers are represented in Figures 2.11

and 2.12. The name rhombic comes from an equivalent construction of this

code, in the so-called rectified picture, where qubits are placed on vertices,

forming an actual rhombic dodecahedron [56].

The detection of errors in the rhombic lattice is illustrated in Figure 2.13.

Chains of parallel X errors are detected by cubes at their extremities (they

form the point sector), while membranes of adjacent X errors are detected

by triangles around the membrane (they form the loop sector). As for the

cubic lattice, there are three Z and three X logical operators, represented in

Figure 2.10b. Z logical operators are made of 2D membranes crossing the torus

and X logical operators are made of chains of parallel operators. Therefore, if

𝐿 is the size of the lattice, the rhombic code is a [3𝐿3,3,𝐿]-code, similarly to
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Figure 2.11: Stabilizers of the rhombic lattice. One of every two cubes (yellow)

represents a cube stabilizer, with Z operators on every edge. The

remaining cubes (white) have a triangle stabilizer at each vertex,

made of X operators on the three adjacent edges. See Figure 2.12 for

a graphical representation of the whole lattice with the stabilizers

the cubic case but with a higher Z-distance of 2𝐿2.

The rhombic lattice is attractive in the highly Z-biased case, where a lot

of information is available for decoding and the distance is high. However, it

comes at the cost of having stabilizers made of twelve operators, which can be

hard to build in practice.

2.5 Decoders for 3D toric codes
While X and Z errors in the 2D surface code are dual to each other, errors

come in two different fashions in 3D. Z errors, detected by vertices, lead to

a point-like syndrome—two excitations at the ends of each chain of errors—

similarly to the 2D case. However, X errors, detected by faces, lead to a

loop-like syndrome: membranes of parallel errors are surrounded by excited

faces, as illustrated in Figure 2.9. Therefore, while 2D decoders can often

readily be generalized for decoding the point-sector in 3D, new decoders need

to be considered for the loop sector. In this thesis, we considered two particular

decoders for the loop sector: the sweep decoder (combined with matching in

the point sector) [23, 56] and the BP-OSD decoder [41].
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Figure 2.12: 3D graphical representation of the rhombic lattice

(a) Detection of X errors with triangles (b) Detection of Z errors with cubes

Figure 2.13: Error detection with the rhombic lattice
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2.5.1 SweepMatch decoder
The sweep decoder is a special type of cellular automaton decoder, meaning

that is an iterative algorithm in which a set of operators is applied at each

step based on the current syndrome and a particular rule, with the objective

of eliminating every excitations after a finite number of steps. The sweep

decoder is based on a variant of Toom’s rule called sweep rule [23]. We start

by choosing an arbitrary spatial direction, defined by a 3D vector v⃗, called the

sweep direction, with the only condition that it is not parallel to an edge of

the lattice. We then apply the following rule at each iteration, and for all the

vertices simultaneously:

1. Find the three oriented edges ⃗e1, ⃗e2, ⃗e3 pointing away from the vertex

and in the same direction as ⃗v, i.e. such that ⃗e𝑖 ⋅ v⃗ > 0.

2. Find the three faces 𝑓1,𝑓2,𝑓3 defined by the three pairs of edges we can

form.

3. If two of the faces are excited, apply a Z operator to the intersecting

edge. If three faces are excited, apply a Z operator to a random edge

among ⃗e1, ⃗e2, ⃗e3. Otherwise, do nothing

4. Stop if no excitation remains or if a maximum number of iterations has

been reached (in which case the decoder has failed).

When combined with a minimum-weight perfect-matching decoder (de-

scribed in Section 2.2.6) for the point sector, we call the resulting decoder

SweepMatch. We will now describe an alternative to SweepMatch that can

be used to decode the 3D toric code, and more generally any quantum LDPC

code: the BP-OSD decoder [41].

2.5.2 BP-OSD decoder
The belief propagation (BP) decoder, also called message-passing decoder, is

one of the most commonly used decoders for classical LDPC codes, its high

performance having contributed to a renewed interest for LDPC codes in the
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1990s [27]. It consists in iteratively calculating the probability that each bit

has an error, by locally passing messages between parity-checks and data bits.

While there is a straightforward generalization of the BP decoder to quantum

LDPC codes, the fact it is not more widely used is due to several quantum-

specific issues. In particular, the degeneracy problem—the idea that many

errors of equal weight can yield a given syndrome—and the presence of short

loops in the Tanner graph of quantum codes can cause a failure of the BP algo-

rithm. To circumvent those problems, Ref. [41] considered the combination of

the BP algorithm with a second decoder, the ordered-statistics decoder (OSD),

in case of failure of the BP procedure. The OSD takes the probabilities cal-

culated by the BP algorithm as input, and returns a valid correction that fits

the syndrome. The BP-OSD decoder has recently been used to successfully

decode a 3D homological product code, exhibiting a much higher threshold

than all the other decoders tested in their paper (including SweepMatch) [24].

In this section, we will start by describing the belief propagation algorithm

and how it can be used to decode quantum codes. We will then study its

issues, and in particular the degeneracy problem, and finally see how the OSD

procedure can make use of the BP output to give a valid decoding solution.

2.5.2.1 Belief propagation algorithm

Belief propagation is a special type of inference algorithm: given a syndrome s,

we want to infer the probability 𝑃(e|s) of each error e. Since an 𝑁-bit message

can have 2𝑁 possible errors e, just storing this probability would require an

exponential space. Therefore, we simplify this problem by slightly altering our

goal. Instead of inferring the full probability, we will aim to compute each

marginal probability

𝑃(𝑒𝑛|𝑠) = ∑
𝑒𝑘,𝑘≠𝑛

𝑃(𝑒1, ...,𝑒𝑁|s) (2.16)
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Applying Baye’s rule to each term of the sum gives

𝑃(e|s) = 𝑃(s,e)
𝑃 (s) (2.17)

∝ 𝑃(s,e) (2.18)

The joint probability 𝑃(s,e) can be factored as

𝑃(s,e) = 𝑃(s|e)𝑃 (e) (2.19)

= 𝟙[He = s]𝑃 (e) (2.20)

=∏
𝑚

𝟙[𝑠𝑚 = ∑
𝑛∈𝒩(𝑚)

𝑒𝑛]∏
𝑛
𝑃(𝑒𝑛) (2.21)

Therefore, we obtain for the marginal probability:

𝑃(𝑒𝑛|𝑠) ∝ ∑
𝑒𝑘∶𝑘≠𝑛

∏
𝑚

𝟙[𝑠𝑚 = ∑
𝑛∈𝒩(𝑚)

𝑒𝑛]∏
𝑛
𝑃(𝑒𝑛) (2.22)

The normalization constant is often not so important in practice, as it can

either be calculated at the end or eliminated completely using probability

ratios.

The idea of belief propagation is to calculate the probability 𝑃(𝑒𝑛|s) by

exploiting the sum-product structure of Eq. (2.22). The intuition is that a

sum of products can be factorized into a product of sums, which can often be

calculated using a reduced number of operations. For instance, in

𝑎𝑐+𝑎𝑑+𝑏𝑐+𝑏𝑑 = (𝑎+𝑏)(𝑎+𝑐), (2.23)

calculating the LHS involves seven operations (four products and three ad-

ditions), while the RHS involves only three operations (one product and two

additions).

To understand how the BP algorithm works, we first need to introduce the

notion of factor graph. Let us consider a factorizable function over 𝑁 variables

𝑓(𝑥1, ...,𝑥𝑁) =∏
𝑗
𝑓𝑗(x𝑗), (2.24)

where each x𝑗 is a subset of the variables {𝑥𝑖}. Its factor graph consists in 𝑁

data nodes, representing the 𝑁 variables 𝑥𝑖, and 𝑀 factor nodes, representing
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the 𝑀 functions 𝑓𝑗. There is an edge between node 𝑖 and node 𝑗 if 𝑓𝑗 depends

on 𝑥𝑖. For instance, the factor graph of 𝑃(e,s), corresponding to Eq. 2.21,

has a data node for each bit of the message and a factor node for each parity

check, with an edge between 𝑠𝑗 and 𝑒𝑖 when 𝑠𝑗 depends on 𝑒𝑖. In other words,

the factor graph of the decoding problem is the same as the Tanner graph of

the code.

Belief propagation then works by iteratively propagating messages be-

tween check nodes and data nodes. It works as follow [27]:

• Initialization: the messages from data nodes 𝑒𝑛 to check nodes 𝑠𝑚, that

we denote 𝑚𝑥
𝑛→𝑚, are initialized to the prior probabilities 𝑃(𝑒𝑛 =𝑥), for

𝑥 ∈ {0,1}.

• Check to data: we send the following messages from check nodes to

data nodes

𝑚𝑥
𝑚→𝑛 = ∑

𝑒𝑛′ ∶𝑛′∈𝒩(𝑚)⧵𝑛
𝟙[𝑠𝑚 = 𝑥+ ∑

𝑛′∈𝒩(𝑚)⧵𝑛
𝑒𝑛′] ∏

𝑛′∈𝒩(𝑚)⧵𝑛
𝑚𝑒𝑛′

𝑛′→𝑚

(2.25)

where 𝒩(𝑚) denotes all the data nodes that are connected to 𝑠𝑚 in the

Tanner graph.

• Data to check: we send the following messages from data nodes to

check nodes:

𝑚𝑥
𝑛→𝑚 = 𝛼𝑛𝑚𝑃(𝑒𝑛 = 𝑥) ∏

𝑚′∈𝒩(𝑛)⧵𝑚
𝑚𝑥

𝑚′→𝑛 (2.26)

where 𝛼𝑛𝑚 is a normalization constant and 𝒩(𝑛) denotes all the check

nodes that are connected to 𝑒𝑛 in the Tanner graph.

• Calculation of the probabilities: we then compute an approximation

of the probability that each error is equal to 1 as

𝑝𝑛 = 𝛼𝑛𝑃(𝑒𝑛 = 𝑥) ∏
𝑚∈𝒩(𝑛)

𝑚1
𝑚→𝑛 (2.27)
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where 𝛼𝑛 is a normalization constant. From those probabilities, we can

compute a correction as

̃𝑒𝑛 = 𝟙[𝑝𝑛 > 1
2
] (2.28)

• Stop: when the syndrome equation H ̃e= s is verified, or after a maximal

number of iterations has been reached (in this case, we return that the

BP decoder has failed).

While convergence is guaranteed when the factor graph is a tree, the presence

of loops can hinder those guarantee [27]. In those cases, the BP algorithm can

however still be used as a powerful heuristic.

The algorithm described above is sometimes called sum-product algorithm

in contrast with one of its variant called min-sum algorithm and widely used

in the context of decoding. In the min-sum version of the BP algorithm, we

want to directly compute the error that has the highest probability

max
e

𝑃(e|s). (2.29)

This maximization can be decomposed as

max
𝑒𝑛

max
𝑒𝑘,𝑘≠𝑛

𝑃(𝑒1, ...,𝑒𝑁|s). (2.30)

The goal of the min-sum algorithm is to evaluate the first part:

max
𝑒𝑘,𝑘≠𝑛

𝑃(𝑒1, ...,𝑒𝑁|s). (2.31)

Replacing 𝑃(e|s) by − log(𝑃 (e|s)), we get the following new problem:

min
𝑒𝑘,𝑘≠𝑛

∑
𝑚

− log(𝟙[𝑠𝑚 = ∑
𝑛∈𝒩(𝑚)

𝑒𝑛])+∑
𝑛

− log((𝑃 (𝑒𝑛)) . (2.32)

In order words, we have replaced the sum by a min and the product by a sum.

Since the BP algorithm only uses the distributivity property of the product

over the sum, it can be generalized to any field. In particular, (ℝ,+,min) is a

field since we have the distributivity property

𝑎+min(𝑏,𝑐) = min(𝑎+𝑏,𝑎+𝑐) (2.33)
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and the sum-product algorithm described above can therefore directly be trans-

formed into a min-sum algorithm with those new operations.

A more detailed account of belief propagation decoding is given in Ref.

[27], and the exact version of the min-sum algorithm we implemented is given

in Ref. [41]. While the generalization of the BP algorithm to the quantum case

is straightforward [39, 40], care needs to be taken to avoid a quantum-specific

issues, as we will see next.

2.5.2.2 The degeneracy problem

Applying the BP algorithm to quantum codes causes two important problems:

1. The Tanner graph of quantum LDPC codes inevitably contains 4-loops,

as shown in Ref. [40], while the BP algorithm is only guaranteed to

converge to the correct probability distribution for trees. However, this

issue is not too problematic in practice, as our goal is not to infer the

exact probability distribution but only a valid correction that has a high

probability of being correct.

2. Toric codes contain many degeneracies: some syndromes can be caused

by many errors of equal weights. Whenever a degenerate syndrome oc-

curs, the BP algorithm might assign an equally high probability to all

the possibilities, leading to a meaningless correction where all the possi-

ble low-weight errors are applied at the same time. Simple examples of

such phenomenon are given in Ref. [40].

Several solutions to the degeneracy problem have been proposed in the litera-

ture, such as breaking the degeneracy with random noise [40], using a neural

network to learn the BP procedure, with a loss function tailored to avoid de-

generacies [58], adding memory effects [42], or complementing the BP decoder

with a second decoder such as the Ordered-Statistics Decoding (OSD) [41]. In

this work, we used this last solution, that we will describe now.
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2.5.2.3 Ordered-Statistics Decoding
The decoding problem can be formulated as an inverse problem: for a syndrome

s, we want to find an error e that solves the equation

He = s (2.34)

However, this system of equations is highly underdetermined: many combina-

tions of errors can fit a given syndrome. The idea of the Ordered-Statistics

Decoder (OSD) is to fix some values of e at a given value (for instance 0), such

as the system applied to the remaining variables is full-rank. To choose the

subset of e that is kept in the system, OSD takes as input a prior probability

on each error 𝑒𝑖. In the BP-OSD decoder, this prior probability corresponds

to the output of the Belief Propagation algorithm.

The OSD algorithm then works as follow [41]:

1. Order the columns of H by decreasing probability of error.

2. Select the 𝑟 independent columns of H with the highest probability,

where 𝑟 is the rank of H.

3. Select 𝑟 independent rows from the new matrix, obtaining a full-rank

square matrix Hr.

4. Solve the reduced system

Hrer = sr (2.35)

where er contains the 𝑟 selected components of the error (ordered by

probability), and sr the 𝑟 selected components of the syndrome.

5. Set the remaining components of e (not contained in er) at 0.

Higher-order versions of OSD that set the remaining components in Step 5 to

values other than zero have been proposed [41], but we have not implemented

them in this thesis.



Chapter 3

Methods and Results

3.1 Visualizing a 3D code
In order to gain intuition on 3D codes and their deformations, I developed

a 3D graphical interface that allows to easily manipulate different 3D codes,

noise models and decoders. This interface is represented in Figure 3.1. It is

developed in Javascript using the library Three.js and can run on any modern

browser. It communicates with a Python backend—to construct the different

parity-check matrices and perform decoding—written with the library Flask.

We outline here the main features of the interface:

• The user can select a lattice type (cubic or rhombic) and lattice size. A

3D representation of the code is then displayed on screen. The user can

zoom in/out, rotate and move around the code.

• Left-clicking (resp. right-clicking) on an edge creates a Z (resp. X) error,

colored differently depending on the error type (X, Y or Z). The excited

stabilizers are then colored in yellow.

• The user can choose between different noise models (currently X/Z biased

noise and depolarizing), error probability, and whether it is deformed or

not. Pressing ”R” on the keyboard then generates random errors.

• The user can choose between different decoders (currently BP-OSD and
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Figure 3.1: Graphical interface developed in the context of this thesis to manipu-

late the different 3D toric codes

SweepMatch) and run the decoding process by pressing ”D” on the key-

board.

During the project, this interface helped in several ways. First, it significantly

simplified the debugging process for the implementation of both the lattices

and the decoders. Then, it allowed us to gain intuition on the proposed de-

formations, by visually showing the stratification of 3D errors into lines and

planes. In some future work, it could potentially help develop new ideas of

deformations. Finally, it served as a tool to explain my project to other people.

We consider putting this interface online as a supplementary material to help

understand the paper, or more generally as an educational tool to learn about

quantum error correction.
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(a) Vertex stabilizer (b) Face stabilizers

Figure 3.2: Stabilizers of the deformed 3D toric code with a cubic lattice, obtained

by applying a Hadamard operator to the usual stabilizers on a chosen

axis.

(a) First decoding solution (b) Second decoding solution

Figure 3.3: Loop decoding in 2D. The plane represents a cross-section of the 3D

cubic code, and each vertex represents a qubit normal to the plane.

Membranes of X errors normal to the plane form a loop syndrome

(purple), with two decoding possibilities: (a) correction inside the

loop ; (b) correction outside the loop
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3.2 Deformations of the 3D toric code

3.2.1 Cubic lattice

Similarly to the XZZX code, the deformations we designed for the 3D toric

code consist in applying a Hadamard operation to all the stabilizers on a

chosen axis, as can be seen in Figure 3.2. The idea behind this construction

is again to reduce the dimensionality of the decoding problem in fully-biased

noise models. Indeed, let us observe what happens in case of pure Z noise:

vertex stabilizers are activated at the extremities of straight chains of errors

along the deformed axis, while face stabilizers are activated around errors on

the two other axes. Therefore, one axis can be decoded independently of the

two others, thereby simplifying the decoding problem. We can also notice that

the decoding problem on the deformed axis becomes equivalent to a repetition

code. We can therefore expect the point sector to have a threshold of 50%,

while the difficulty of the decoding problem in the loop sector is unknown a

priori. We will determine the loop sector threshold numerically in Section 3.4.

For pure X noise, vertex stabilizers are activated at the end of chains lying

on the 2D planes spanned by the undeformed axes, making the decoding prob-

lem equivalent to that of a 2D toric code. On the remaining axis, membrane of

errors normal to each plane are surrounded by loops. The decoding problem

therefore consists in decoding loops in 2D, as represented in Figure 3.3. This

can be done with a threshold of 50%.

3.2.2 Rhombic lattice

For the rhombic lattice, we apply the same deformation: a Hadamard operation

on a chosen axis. The cube stabilizers are now made of eight X and four Z

operators, while the triangle stabilizers each have one X and two Z operators.

The new decoding problem has a reduced dimensionality in exactly the same

way as for the cubic code.
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3.3 Simulation method

3.3.1 Experimental setup
The goal of this work is to evaluate the threshold of the two types of 3D

codes (cubic and rhombic) for different biased noise models, and compare the

original code with its deformed version, as well as the BP-OSD decoder with

the SweepMatch decoder. We parametrize the bias with the bias ratios 𝜂𝑋,

𝜂𝑌, and 𝜂𝑍 described in Section 2.3, and take 𝜂 ∈ {0.5,1,5,10,30,100,∞} for

each direction.

To evaluate the threshold, we simulate both codes for lattice sizes 𝐿 ∈

{4,6,8,10} and physical error rates between 𝑝 = 0.05 and 𝑝 = 0.5, with a

step size of 0.05. From those data, we build the so-called crossover plots,

which give the logical error rate in function of the physical error rate for each

lattice size. The threshold can then be read as the intersection point between

the curves. To extract this crossover point from the figure, we use a technique

called finite-size scaling analysis, which consists in fitting a curve parametrized

by the threshold to the data. In this project, we use the method described in

[21] where

𝑦 = 𝐴+𝐵𝑥+𝐶𝑥2 (3.1)

with 𝑦 the logical error rate and

𝑥 = (𝑝−𝑝th)𝐿1/𝜈 (3.2)

with 𝑝 the physical error rate and 𝑝th the threshold probability we are trying

to evaluate. We then run an optimization procedure to get the parameters

(𝑝th,𝜈,𝐴,𝐵,𝐶) that fit the data the best, as measured by the mean-squared

error. While this technique worked in most of our experiments, it failed to

give a coherent result in a few crossover plots. In those cases, we reported the

threshold as observed by manually looking at the curves. Before publishing

the presented results, we will make sure that the finite-size scaling analysis

work for all our data.
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We ran all the simulations on the high-performance computing cluster

Myriad available at UCL. We used one job per code type, noise model and

physical error rate, allowing us to massively parallelize the computation. The

results are reported in Sections 3.4 and 3.5. Apart from reporting the general

thresholds and crossover plots, we also split each crossover plot into two plots—

one for the loop sector and one for the point sector—since those can have

very different thresholds. Finally, we report the evolution of the threshold

with the bias ratio 𝜂, for different bias directions, on codes with and without

deformations.

3.3.2 BP-OSD decoder: implementation details

As discussed before, the OSD algorithm has a scalability issue. In particular,

two of its steps induce a high cost: the selection of 𝑟 independent columns and

the inversion of the resulting matrix. A naive implementation of the first step

would consist in iterating over each column of the matrix, computing the rank

(mod 2) of the selected matrix (all previously selected columns, plus the new

column), and keeping the column if and only if this new matrix if full-rank.

The inversion step could then be implemented using any variant of Gaussian

elimination (such as LU decomposition).

However, we managed to gain a factor ×10 in performance by noticing the

presence of repeated calculations. Indeed, calculating the rank at each itera-

tion (to select independent columns) involves repeating a Gaussian elimination

process. Instead, we chose to first compute the reduced row echelon form of

the full matrix H (sorted by most probable column). Independent columns can

then be extracted directly from it: columns with their last non-zero element

in the same row are dependent and one of them can be removed. Finally, the

reduced row echelon form allows a fast inversion of the resulting matrix.

3.4 Results for the cubic lattice
We present in this section the results obtained for the 3D toric code with a cubic

lattice, for different noise models, stabilizer deformations and decoders. Table
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3.1 summarizes the different thresholds obtained in each configuration. Before

diving into the detail of those results, we can notice three general phenomena

from Table 3.1:

1. Going from no bias (depolarizing noise) to full Z bias results in a large

increase of the threshold, regardless of the decoder and the deformation

used in the simulation. On the other hand, going from no bias to full X

bias only increases the threshold when the deformed code is used.

2. Deforming the stabilizers significantly improves the threshold in the bi-

ased noise regime: from 21.7% to 36% for pure Z noise decoded with the

BP-OSD decoder, and from 2.9% to 7.4% for pure X noise

3. Changing from the SweepMatch decoder to the BP-OSD decoder yields

a large increase of threshold in the pure Z noise model: from 14.7% to

21.7% for the undeformed code, and from 22.2% to 36% for the deformed

code.

Therefore, combining the deformation with the BP-OSD decoder seems to

maximize the performance in the biased noise regime. Let us now look at the

crossover plots that allowed us to obtain those thresholds for those different

regimes, before studying more precisely the effect of bias on the threshold. The

remaining figures and thresholds presented in this section are produced using

the BP-OSD decoder.
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Noise model Pure Z Pure X Depolarizing

Undeformed SweepMatch 14.7 2.9 4.4

Undeformed BP-OSD 21.7 2.9 4.3

Deformed SweepMatch 22.2 7.1 4.7

Deformed BP-OSD > 36 7.4 4.2

Table 3.1: Thresholds (in %) for the cubic lattice, using different noise models,

code deformations and decoders. The best result for each noise model

is highlighted in bold. The case of pure Z noise with a deformed BP-

OSD decoder could not be determined precisely with our data, but is

probably more than 36%, as discussed in the main text.
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3.4.1 Pure Z noise
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(a) Undeformed code
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(b) Deformed code

Figure 3.4: Crossover plot of the cubic code under pure Z noise, decoded with

a BP-OSD decoder, for both the undeformed (a) and deformed (b)

stabilizers.

Figure 3.4 shows the crossover plot obtained for the 3D toric code with a cubic

lattice, for both deformed and undeformed stabilizers, in the pure Z noise

regime. We decomposed the logical error rates into the loop sector (errors

triggering a face stabilizer) and the point sector (errors triggering a vertex

stabilizer).

For the undeformed code, only the loop sector has errors due to the ab-

sence of X errors (which would trigger the point sector). The crossover point

is clearly visible and occurs at around 21.7%.

For the deformed code, both sectors are contributing to the total error.
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As discussed in Section 3.2.1, the threshold for the point sector is in theory

50%, since the decoding problem is equivalent to that of a repetition code.

We cannot resolve it in the plot due to a finite-size effect where the logical

error saturates. Similarly, the threshold for the loop sector cannot be resolved

precisely with the current data and is an example of failure of the finite-size

scaling technique to determine the threshold. From the current data, the

threshold seems to be between 36% and 50%, and we can hope that adding

more lattice sizes to the simulation would help resolve it. The threshold could

also be 50% and more theory will be needed to understand why. In any case, we

observe that deforming the code leads to a dramatic increase of the threshold,

even though its exact magnitude still needs to be determined.
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3.4.2 Pure X noise
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(a) Undeformed code
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(b) Deformed code

Figure 3.5: Crossover plot of the cubic code under pure X noise, decoded with

a BP-OSD decoder, for both the undeformed (a) and deformed (b)

stabilizers.

Figure 3.5 shows the crossover plots for pure X noise. As expected, the loop

sector in the undeformed case has no error, as X errors only lead to point

excitations. On the other hand, the loop sector contributes to the logical

error rate in the deformed case. As discussed in Section 3.2.1, the theoretical

threshold for the loop sector is 50%. This cannot be resolved precisely on the

curves, due to a finite-size effect, but we are expecting to recover this 50% as

we add more lattice sizes to the system.

The actual thresholds of the code under pure X noise can be read from

the point sector, and we find 2.9% for the undeformed case and 7.4% for the
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deformed case.

3.4.3 Threshold and bias
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Figure 3.6: Threshold vs bias plot for the cubic lattice, for both X and Z bias,

deformed and undeformed codes. We notice that for Z-biased noise,

there is a regime for which the undeformed code performs better than

the deformed one

Finally, Figure 3.6 shows the evolution of the threshold with the bias ratio

𝜂. For Z-biased noise, we observe the presence of two regimes: one for 𝜂𝑍
slightly below 100 where the deformation is worst than the original code, and

one for higher bias ratios where the deformation quickly provides a significant

advantage. Knowing the exact transition point will be useful in choosing which

code to use depending on the experimental parameters of a given quantum

device. On the other hand, for pure X noise, the deformed code provides a

constant advantage.

3.5 Results for the rhombic lattice
We present in this section the results obtained for the 3D toric code with a

rhombic lattice, for different noise models and stabilizer deformations. Since

the sweep decoder is not directly generalizable to the rhombic lattice, we only

used the BP-OSD decoder. Table 3.2 summarizes the different thresholds

obtained in each configuration. As for the cubic results, let us start by noting
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Noise model Pure Z Pure X Depolarizing

Undeformed BP-OSD 28.4 1.0 1.5

Deformed BP-OSD 6.5 1.7 1.7

Table 3.2: Thresholds (in %) for the cubic lattice, using different noise models and

code deformations. The best result for each noise model is highlighted

in bold.

a two general trends from Table 3.2:

1. Going from no bias to pure Z bias has a dramatic effect on the original

rhombic code: we pass from a threshold of 1.5% to 28.4%. This can

easily be explained by the fact that pure Z noise only involves triangle

stabilizers, which give a lot of information on the error.

2. Deforming the code does not seem to help, at least in the pure Z case

(which is the most relevant case as it leads to best overall thresholds).

It can be explained by the introduction of a few cube excitations, which

are particularly hard to decode, apparently even with the dimensionality

reduction resulting from the deformation.

Therefore, the rhombic lattice could be a relevant lattice for a device with

highly biased noise, but more work needs to be done to find better deforma-

tions. Let us now look at the detailed crossover plots and threshold vs bias

curves.
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3.5.1 Pure Z noise
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Figure 3.7: Crossover plot of the rhombic code under pure Z noise, decoded with

a BP-OSD decoder, for both the undeformed (a) and deformed (b)

stabilizers.

The results for pure Z noise are represented in Figure 3.7. We observe that

the undeformed code only contains loop errors as expected, and has distinct

crossover at 28.4%. The deformed code has some contributions from both

sectors, with a loop threshold below 50%, which is first difference compared

to cubic lattice.
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3.5.2 Pure X noise
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Figure 3.8: Crossover plot of the rhombic code under pure X noise, decoded with a

BP-OSD decoder, for both the undeformed (a) and deformed (b) stabi-

lizers. Note: we rescaled the x-axis between 0 and 0.1 for convenience,

since no loop error was detected between 0 and 0.5.

The results for pure X noise are represented in Figure 3.8. We observe that for

both the deformed and the undeformed code, loop errors make no contribution

to the total logical error. For the undeformed code, it is expected as only cube

stabilizers are activated. For the deformed code, it is less obvious but it can

also be explained theoretically: the deformed loop sector detects straight lines

of X errors on a single axis. Since triangle stabilizers form a loop around those

chains, they give sufficient information to fully reconstruct and correct the

error (without any degeneracy). Therefore, the decoder is able to correct loop
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errors all the time.

3.5.3 Threshold and bias
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Figure 3.9: Threshold vs bias plot for the rhombic lattice, for both X and Z bias,

deformed and undeformed codes.

Finally, Figure 3.9 shows the evolution of the threshold with the bias ratio. The

main observation we can make from this plot is that threshold for undeformed Z

noise quickly stabilizes to its final value of 28%. It means that the rhombic code

could give good performance even for bias ratios as low as 30. For comparison,

realistic bias ratios in current experiments can be of the order of 100 [18].

Comparing this to the deformed cubic lattice, which reaches 28% for bias

ratios above 100 (see Figure 3.6), we can see that for a bias ratio between 30

and 100, the undeformed rhombic lattice gives the best performance of all the

codes studied in this thesis.



Chapter 4

Conclusion

In this thesis, we have introduced a new version of the 3D toric code, with

deformed stabilizers inspired by the recent XZZX surface code. We have shown

that it outperforms the original 3D code when noise is highly biased towards

X or Z errors. Moreover, we have compared two common decoders for 3D

codes, SweepMatch and BP-OSD, and shown that BP-OSD systematically

outperforms SweepMatch in the biased noise regime. Finally, we have studied

the rhombic code under biased noise and found a very high threshold for bias

ratios above 30 . However, the deformations proposed for the rhombic lattice

did not lead to any relevant threshold improvement.

This project was part of a collaboration and my own contribution has been

to implement both the BP-OSD decoder and the rhombic code in our library,

and to evaluate the corresponding thresholds. Moreover, I have developed a

3D interface that has helped the integration and debugging of new codes in our

library, in addition to helping gain more intuition on those codes and serving

an educational purpose.

The results presented in this manuscript are still preliminary and more

work needs to be done before publication. In particular, we plan to simulate

more lattice sizes in order to have a better resolution of the threshold. We also

plan to improve the finite-size scaling heuristic to obtain a correct threshold

estimation for all our data, as well as some error bars to evaluate the uncer-

tainty of the estimated threshold. Apart from those essential items, there are
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many avenues for future work, including:

1. Improving and accelerating the BP-OSD decoder. In particular, many

improvements of the BP decoder have been proposed in the literature,

such as adding random noise to the messages [40] or using memory ef-

fects [42] in order to solve the degeneracy problem. Having a more

accurate BP decoder would result in less calls to the costly OSD proce-

dure, accelerating the overall decoding process. Moreover, implementing

higher-order versions of OSD, as proposed in Ref. [41], could improve

the threshold of our decoder.

2. Evaluating the threshold of the 3D code with coprime dimensions, gen-

eralizing the idea of Ref. [20] that 2D surface codes with coprime dimen-

sions tend to have the highest threshold.

3. Incorporating non-periodic boundary conditions to our 3D codes, such as

the ones proposed in Ref. [56], which are more experimentally relevant

than the periodic ones.

4. Incorporating measurement errors to our threshold estimation, in order

to evaluate our deformations in a more realistic setting.

5. Developing a statistical physics model to evaluate the threshold of the

deformed code theoretically. This work has already been started by

members of the collaboration.

6. Redoing the comparison between 2D and 3D codes made in Ref. [12],

this time taking deformations and biased noise into account, to see if

the 3D code has some chance of being relevant alternative to the surface

code in the near future.

Overall, the recent idea of deforming stabilizers to improve the performance of

a code under biased noise has been one of the most insightful ideas in quantum

error-correction, as it has led to tremendous threshold improvements in both
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the surface code and the 3D toric code. Developing this theory and applying

it to more code families and realistic noise models has the potential to make

fault-tolerance a little closer to reality.
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