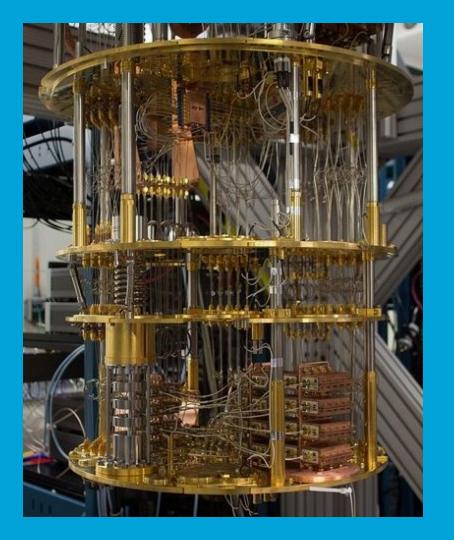
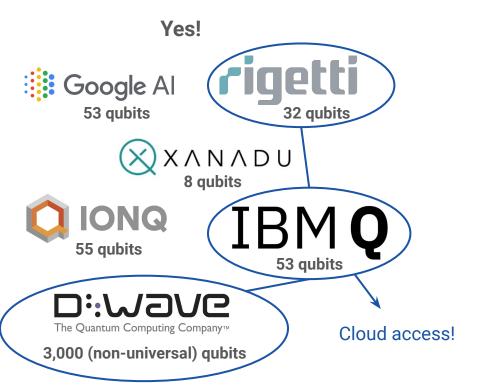

# Quantum Machine Learning Beyond the Hype


#### Arthur Pesah

Previously 1QBit, Waterloo, Canada KTH Royal Institute of Technology, Stockholm, Sweden




# What are you going to learn?

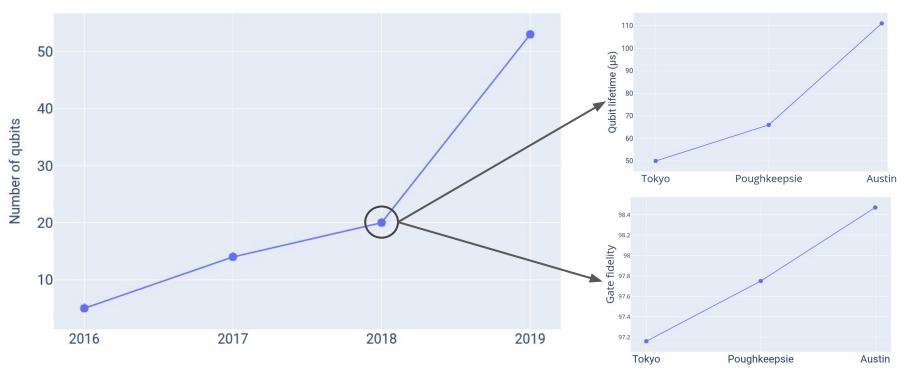




#### Do we have quantum computers?



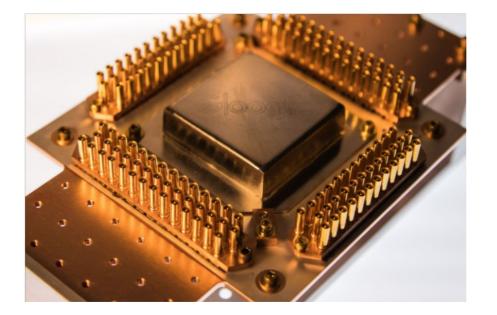



...no quantum advantage has been shown on a practical application yet!

#### Why?

- 1. Not enough qubits
- 2. Qubits too noisy

#### Do we have quantum computers?


However, huge progress recently (e.g. IBM quantum computers)



Source: <a href="https://quantumcomputingreport.com/scorecards/qubit-quality/">https://quantumcomputingreport.com/scorecards/qubit-quality/</a>

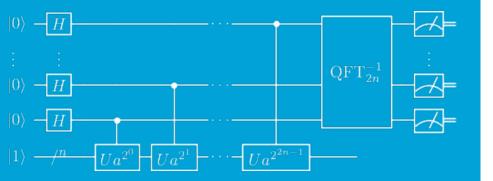
### Do we have quantum computers?

However, huge progress recently (e.g. quantum supremacy)



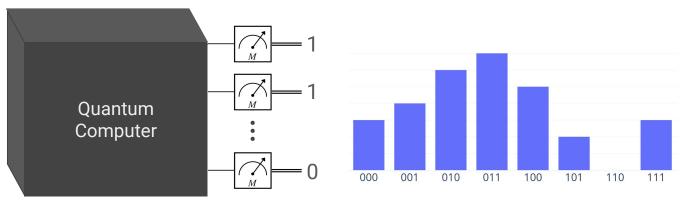


Quantum supremacy




Practical quantum advantage

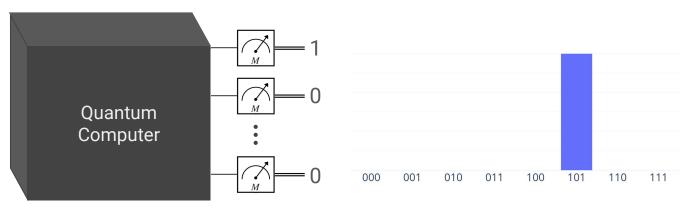
#### How can we achieve a practical quantum advantage?


Long-term Traditional quantum algorithms Factoring algorithm (Shor) Search in unstructured database (Grover) Quantum machine learning (QSVM, QPCA...) Very well understood algorithms, with precise bounds and complexity-theoretic advantage

Intermediate-term Noisy Intermediate-term Quantum era (NISQ) Quantum simulation (chemistry, material...) **Optimization problems** Ouantum "neural networks" Very recent heuristics (>2014), as complicated to analyse as regular neural networks



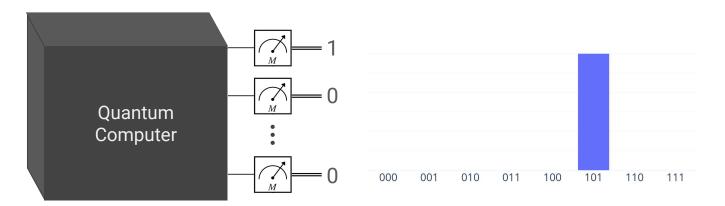
### What is a quantum computer?


A quantum computer is a **generative model**...



...that can be stochastic

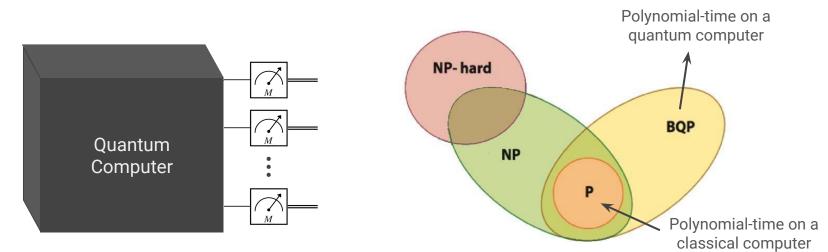
### What is a quantum computer?


A quantum computer is a **generative model**...



...that can be **deterministic** 

### What is a quantum computer?


A quantum computer is a **generative model...** 



...that is very efficient on specific problems

### What is a quantum computer?

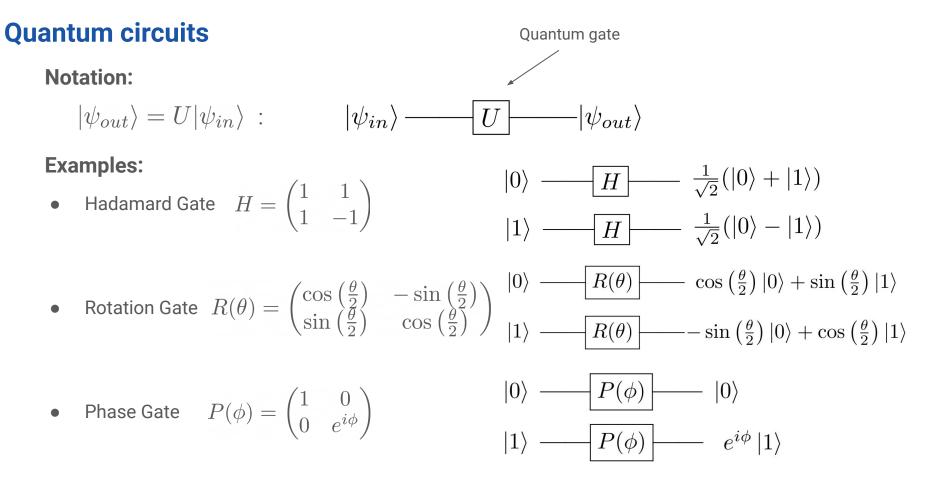
A quantum computer is **not** equivalent to a Turing machine:



It **cannot** be efficiently simulated by a classical computer...

...and has different complexity classes

#### Quantum physics as a generalized probability theory


|       | Probabilistic bit                                                                                                  | Quantum bit (Qubit)                                                                 |
|-------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| State | $\mathbf{p} = \begin{pmatrix} p_0 \\ p_1 \end{pmatrix} \in \mathbb{R}^2, \ \mathbf{p} \ge 0,   \mathbf{p}  _1 = 1$ | $\psi = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} \in \mathbb{C}^2,    \psi  _2 = 1$ |

#### Quantum physics as a generalized probability theory

|                        | Probabilistic bit                                                                                                  | Quantum bit (Qubit)                                                                 |
|------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| State                  | $\mathbf{p} = \begin{pmatrix} p_0 \\ p_1 \end{pmatrix} \in \mathbb{R}^2, \ \mathbf{p} \ge 0,   \mathbf{p}  _1 = 1$ | $\psi = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} \in \mathbb{C}^2,    \psi  _2 = 1$ |
| Probability of event i | $p_i$                                                                                                              | $ a_i ^2$                                                                           |

#### Quantum physics as a generalized probability theory

|                                       | Probabilistic bit                                                                                                                                    | Quantum bit (Qubit)                                                                 |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| State                                 | $\mathbf{p} = egin{pmatrix} p_0 \ p_1 \end{pmatrix} \in \mathbb{R}^2, \ \mathbf{p} \geq 0,   \mathbf{p}  _1 = 1$                                     | $\psi = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} \in \mathbb{C}^2,    \psi  _2 = 1$ |
| Probability of event i                | $p_i$                                                                                                                                                | $ a_{i} ^{2}$                                                                       |
|                                       | Stochastic matrix                                                                                                                                    | Unitary matrix                                                                      |
| Evolution                             | $  S\mathbf{p}  _1 =   \mathbf{p}  _1$                                                                                                               | $  U\psi  _2 =   \psi  _2$                                                          |
| Notation: $ 0\rangle := e_0 = \left($ | $ \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix} \qquad \qquad  \psi\rangle := \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} = a_0  0\rangle + a_1  1\rangle $ |                                                                                     |
| $ 1\rangle := e_1 = \left($           | $ \psi\rangle - \langle a_1 \rangle - a_0  0\rangle$                                                                                                 | $+ u_1   1 \rangle$                                                                 |



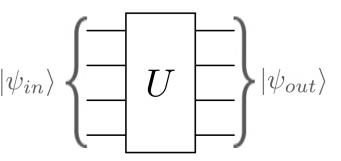
### Multiple qubits $(a_{00})$

**2-qubit state:** 
$$|\psi\rangle = \begin{pmatrix} a_{01} \\ a_{10} \\ a_{11} \end{pmatrix} = a_{00}|00\rangle + a_{01}|01\rangle + a_{10}|10\rangle + a_{11}|11\rangle \in \mathbb{C}^4$$

**3-qubit state:** 
$$|\psi\rangle = a_{000}|000\rangle + a_{001}|001\rangle + \dots + a_{111}|111\rangle \in \mathbb{C}^8$$

 $2^n$ n-qubit state:  $|\psi
angle = \sum a_i |i
angle \in \mathbb{C}^{2^n}$  ——— Exponentially-large storage i = 1

Could we use gubits as a memory for classical data?


**Not simple:** it can be exponentially-hard to retrieve those amplitudes!

Quantum state tomography

# **Multiple qubits**

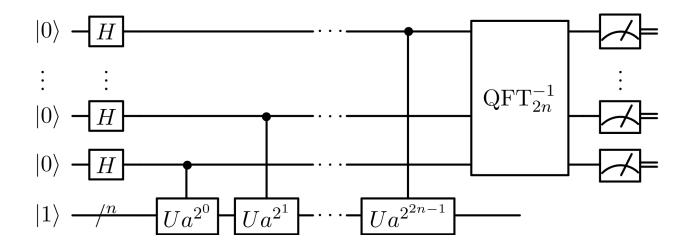
What about the gates?

 $U \in \mathcal{U}(2^n)$ 



Physically efficient operations...

...that can perform exponentially-large matrix multiplications

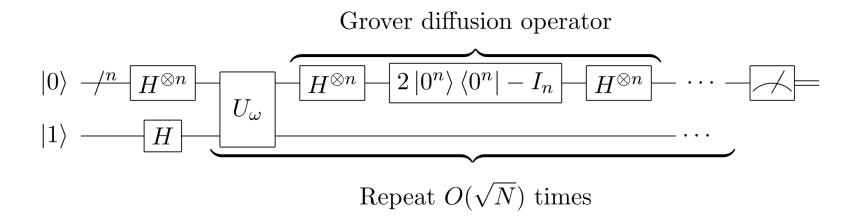

Quantum "parallelism"? Yes and No
It's what makes quantum
computers powerful
You can only retrieve the
result efficiently in very
specific cases

### **Quantum Algorithms**

#### Shor's Algorithm

Goal: Factor a number N into its prime factors

Speed-up: exponential

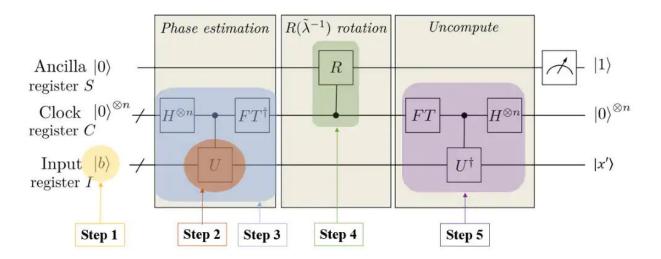



### **Quantum Algorithms**

#### **Grover Algorithm**

Goal: Search an element in an unstructured list

Speed-up: quadratic



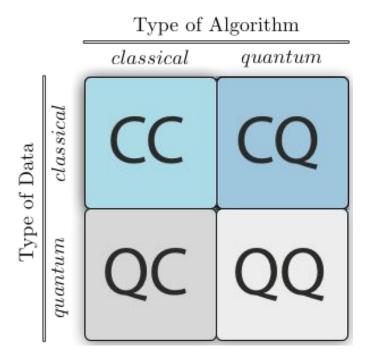

### **Quantum Algorithms**

#### **HHL Algorithm**

**Goal:** Solve well-conditioned linear system of equations  $A\mathbf{x} = b$ 

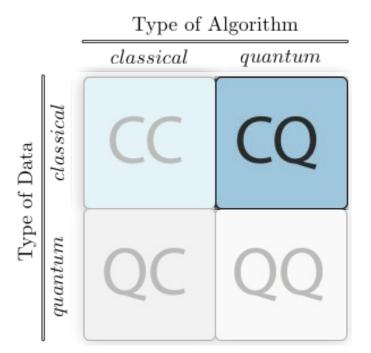
**Speed-up:** exponential (with some major caveats)




Source: Dervovic et al., Quantum linear systems algorithms: a primer, <u>arxiv.org/abs/1802.08227</u>

"Most **overhyped** and **underestimated** field in quantum computing", lordanis Kerenidis (Paris Diderot)

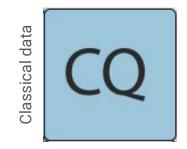
### **Quantum Machine Learning**


### Quantum machine learning: overview

### What is quantum machine learning?



### Quantum machine learning: overview


### What is quantum machine learning?



### Quantum machine learning: overview

### What is quantum machine learning?

Quantum algorithm



First-wave QML (from ~2010)

Fault-tolerance devices

Theoretical guarantees

**Requires QRAM** 

QSVM, QPCA, QBoost, Q-Means, etc.

Second-wave QML (from ~2016)

Noisy devices

Heuristics

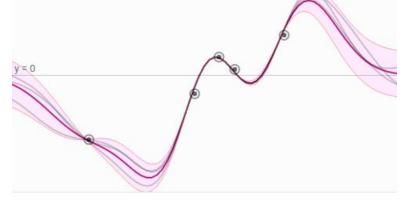
No QRAM

Quantum NN, Quantum Kernels

# Quantum machine learning: first-wave

### **Example: Quantum Gaussian Processes (GP)**

#### **Classical GP:**


The mean and std of a GP with kernel K is given by:

 $\mu_* = \mathbf{k}_*^T (K + \sigma^2 I_n)^{-1} \mathbf{y}$  $\sigma_* = k(\mathbf{x}_*, \mathbf{x}_*) - \mathbf{k}_*^T (K + \sigma^2 I_n)^{-1} \mathbf{k}_*$ 

#### Quantum GP:

To calculate the mean:

- 1. Prepare states  $|{f k}_*
  angle$  and  $|{f y}
  angle$  on a quantum RAM
- 2. Calculate  $|\mathbf{b}
  angle = (K + \sigma^2 I_n)^{-1} |\mathbf{y}
  angle$  using HHL
- 3. Calculate the inner product  $\langle \mathbf{b} | \mathbf{y} \rangle$



Source: distill.pub/2019/visual-exploration-gaussian-processes/

# Quantum machine learning: first-wave

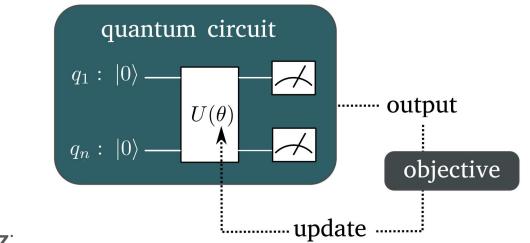
### **Caveat 1: QRAM might not be feasible**



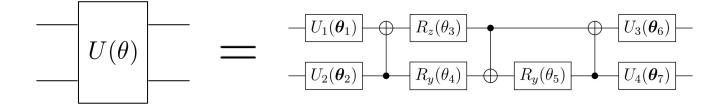
- 1. It might be too slow to have any advantage
- 2. Requires too many qubits for short-term applications

Source: Quantum computing Memes for QMA-complete teens, Twitter

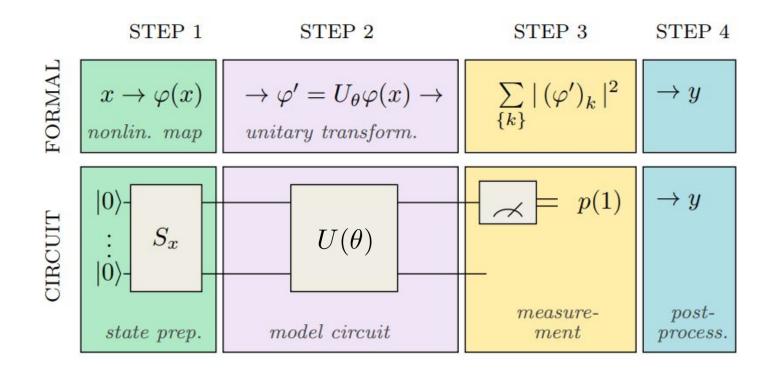
# Quantum machine learning: first-wave


#### **Caveat 2: Beware dequantization!**



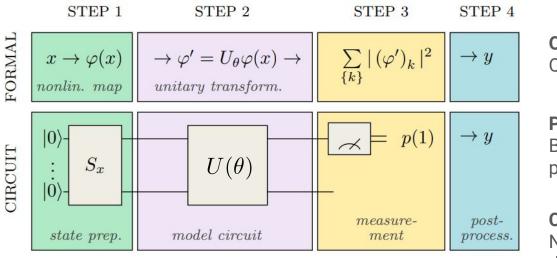

- 1. Quantum-inspired algorithms with same performance as purely quantum can be constructed
- 2. Dequantized algorithms: recommendation systems, low-rank HHL, PCA...
- 3. But constant factors matter!

Source: Quantum computing Memes for QMA-complete teens, Twitter


### **Variational circuits**



Example of **ansatz**:




### Variational quantum classifier



Source: Schuld et al., Circuit-centric quantum classifiers, arxiv.org/abs/1804.00633

### Variational quantum classifier



#### **Optimization** Quantum stochastic gradient descent

**Potential advantage** Better inference time for some problems

#### Caveat

No proof of advantage, empirical demonstration on toy models

### How can I try it myself?

#### My favorite libraries for quantum ML

#### Pennylane (Python):

- Easy to use
- Can compute quantum and classical gradients
- Interface with PyTorch and Tensorflow
- Can connect to other simulators and real devices

#### Yao (Julia):

- Very modular and flexible
- Fastest simulator currently available
- Automatic differentiation as well

#### •••

import pennylane as qml
from pennylane import numpy as np

# create a quantum device
dev1 = qml.device('default.qubit', wires=1)

@qml.qnode(dev1)
def circuit(phi1, phi2):
 # a quantum node
 qml.RX(phi1, wires=0)
 qml.RY(phi2, wires=0)
 return qml.expval(qml.PauliZ(0))

def cost(x, y):
 # classical processing
 return np.sin(np.abs(circuit(x, y))) - 1

# calculate the gradient
dcost = qml.grad(cost, argnum=[0, 1]

Source: Pennylane website (pennylane.ai), Yao website (https://yaoquantum.org/)

### Discussion

# QML is the "most **overhyped** and **underestimated** field in quantum computing" (lordanis Kerenidis)

**Overhyped:** lot of fuss, but too early to predict if QML will ever be useful: no perfect QML algorithm has been found so far

#### **Underestimated:**

- Research in this field  $\Rightarrow$  new classical algorithms discovered!
- Dequantization only discovered in 2018 ⇒ non-dequantizable algorithms might still be found!
- Second-wave QML very similar to early deep learning research!
- Only a small community actively working on QML!









# When someone tries to show you a Quantum Machine Learning paper

