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Experimentally demonstrated for several types 
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i.e. Z errors 100x more likely than X and Y
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Biased noise

3D topological code

Under biased noise, small changes to 3D topological codes 
can result in big improvements of their performance

Three main code families considered in this work:

3D toric codes Color code Fracton codes
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Overview

Under biased noise, small changes to 3D topological codes 
can result in big improvements of their performance

Biased noise Clifford-deformation: we apply a Clifford gate 
(typically a Hadamard) on one axis

Dimension and layout: 
rotated 3D toric code

3D topological code

Small changes
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Overview

Big improvements

Under biased noise, small changes to 3D topological codes 
can result in big improvements of their performance

Biased noise

3D topological code

Small changes
Subthreshold error rate of the 3D rotated toric 
code with some specific dimensions scales as

with the distance d of the code

Code threshold of 50% at infinite bias using for 
all our codes



What you will learn in this talk

What are 3D codes and why are 
they interesting?

How to prove that a code has a 50% 
threshold?

Single-shot

Transversal T

Partial self-correction

New phases of matter

Materialized symmetries

Repetition codes

Weight-reduction



Outline

Code boundaries and subthreshold scaling

Clifford deformations of quantum codes

A tour of 3D topological codes



A TOUR OF 
3D TOPOLOGICAL CODES



Why are 3D codes interesting?

1. They can implement transversal non-Clifford gates

Bravyi-König theorem: transversal gates of a D-dimensional code are restricted to the 
Dth level of the Clifford hierarchy

⇒ 3D codes can (in principle) implement a T gate transversally, while 2D cannot 
(costly methods like magic state distillation are required)

Eastin-Knill theorem: no code has a universal set of transversal gate

⇒ 3D codes often have a non-Clifford gate that cannot be implemented transversally 
(e.g. Hadamard), but state injection is possible for them without distillation.

X

X
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Why are 3D codes interesting?

1. They can implement transversal non-Clifford gates

2.    They can have single-shot error correction

Syndrome with 
measurement errors

Syndrome 
recovery

Decoding

Examples: 

- 3D toric/color code for Z errors

- Subsystem 3D toric/color code for 

all errors



Why are 3D codes interesting?

1. They can implement transversal non-Clifford gates

2.    They can have single-shot error correction

3.    They can have partial self-correction

Self-correction: when putting the code in a thermal bath, the coherence time of the 
logical qubits is exponential in the lattice size (no decoding needed)

Partial self-correction: the coherence time is exponential up to a given lattice size, 
then decreases

Fractons such as the Haah code have partial self-correction



Why are 3D codes interesting?

1. They can implement transversal non-Clifford gates

2.    They can have single-shot error correction

3.    They can have partial self-correction

4.    They correspond to interesting new phases of matter

2D translation-invariant stabilizer codes have been fully classified (for prime dimensional 
qudits), and they are all copies of the 2D toric codes up to local unitaries [Haah, 2018]

On the other hand, 3D codes are much more diverse (e.g. with fractons).
Classifying all 3D phases is still an open problem.



What is the catch?

1. They require a higher connectivity

2.    They often require more qubits to achieve a given distance

3.   This added overhead can make their non-Clifford gates more costly
        than magic state distillation [Kubica et al., 2021]

However, several reasons to be optimistic:

1. Recent work on single-shot decoding of the 3D subsystem toric code has shown 
a considerably improved threshold [Kubica & Vasmer, 2022]

2.    Fractal 3D codes could improve the qubit count of those codes [Zhu et al, 2021]

3.    This work: biased noise can also improve the threshold



Main 3D code families

3D toric codes

3D color codes

Fracton codes
(e.g. X-cube model)



CLIFFORD-DEFORMATION OF 
QUANTUM CODES
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XZZX surface code

Bonilla Ataides et al., The XZZX Surface Code, 2020

Motivation: 

1) Classical codes usually have a 50% threshold (e.g. rep. code)

2)    If we have infinite bias noise (e.g. pure Z noise), we could use a                                                                                
        classical code and obtain a 50% threshold

3)    However, the surface code (and many other codes) don’t have a 50%    
        threshold at infinite bias (e.g. the surface code has 10%)



XZZX surface code

Goal: find stabilizers that 
work better under biased 
noise
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XZZX surface code

Goal: find stabilizers that 
work better under biased 
noise X X

X X

Idea: apply a Hadamard 
operator on the horizontal 
axis

Bonilla Ataides et al., The XZZX Surface Code, 2020

Infinite Z bias: the Z part 
of the stabilizers 
becomes useless
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Bonilla Ataides et al., The XZZX Surface Code, 2020
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XZZX surface code

Bonilla Ataides et al., The XZZX Surface Code, 2020
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XZZX surface code

Extremely biased noise
Only Z errors

Decoding problem
Tackle each row of the lattice 

independently

Threshold?
50%

(same as the repetition code)

Z ZZ
Z Z
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XZZX surface code

The symmetry perspective

In the normal surface code, we have:

⇒ even number of -1 in the syndrome
⇒ even number of face and vertex excitations
⇒ matching!

That’s what we call a materialized symmetry & it 
leads to a conservation law for the syndrome:
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The symmetry perspective
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linear symmetries under pure Z noise:
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XZZX surface code

The symmetry perspective

In the XZZX surface code, we have effective 
linear symmetries under pure Z noise:

Z

Z

Z
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Z

Z
as the Z part of stabilizers is irrelevant 
under pure Z noise

⇒ even number of excitation along each 
line
⇒ matching along each line!



XY surface code

Clifford-deformation: 
Hadamard + S gate on all 
qubits 

Tuckett et al., Tailoring surface codes for highly biased noise, 2018
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XY surface code

Clifford-deformation: 
Hadamard + S gate on all 
qubits 

Tuckett et al., Tailoring surface codes for highly biased noise, 2018

X

X X

X

Infinite Z-bias: X and Y 
acts similarly

X

X X

X

Z
Z errors activate the 4 
neighboring plaquettes

Question: why does this 
code has a 50% threshold?
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XY surface code

Materialized symmetry:
along every row & column

Conservation law:
Each column has an even 
number of excitations

High degeneracy on a 
given column

The parity at each 
horizontal edge is what 
matters!

Z

Z

Z

Decoding strategy

Step 1: match along each 
column and predict the parity 
of each horizontal edge

Step 2: match along each 
row

Why 50% threshold?

(Show on blackboard)



XY surface code
Weight-reduction technique

X

X X

X

Step 1: exploit vertical symmetry Step 2: exploit horizontal symmetry 



3D toric code

Hadamard on 
the vertical axis

Stabilizers of the CSS toric code Stabilizers of the deformed toric code



What happens at infinite Z bias?

Linear symmetries for vertex stabilizers and vertical 
plaquettes

Stabilizers of the deformed toric code

3D toric code

We can decode all the qubits by solving repetition codes along those symmetries



3D color code

Clifford-deformation: Hadamard on each purple vertex



3D color code

Cell decoding: 2-step weight-reduction



3D color code

Plaquette decoding: 
weight-reduction on 
several subsets of 
qubits



X-cube model

Clifford-deformation: Hadamard on horizontal qubits



X-cube model

Cube decoding: reduces to an XY 
surface code on each layer

Stabilizers of the deformed X-cube

Vertex decoding: exploit simple linear 
materialized symmetries



Finite-bias analysis

3D toric code, decoded with 
Sweep-Matching and BP-OSD (courtesy 
Joschka for the ldpc library)

X-cube model, decoded with BP-OSD
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Pure Z logicals
Question: what is the infinite-bias distance of those Clifford-deformed codes?

Answer: it depends on the boundary conditions & lattice dimensions

Example: coprime-XZZX
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Z Z ZZZZ

Z Z ZZZZ

Z Z ZZZZ

Z Z ZZZZ
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Pure Z logicals
Question: what is the infinite-bias distance of those Clifford-deformed codes?

Answer: it depends on the boundary conditions & lattice dimensions

Example: coprime-XZZX

Our work: coprime rotated 3D toric code

Consequences: improved subthreshold scaling at infinite bias

Pure Z logical supported on O(N) qubits if the 
lattice has dimensions  

or



Discussion
In conclusion:

1. 3D codes have many useful properties, such as single-shot QEC, transversal T and partial 
self-correction, but a setting where they are better than 2D codes is yet to be found

2.     They naturally improve under biased noise, but for very large bias, we found
        Clifford-deformation that can push their performance even further 

2.     Do all stabilizer codes have a deformed version with 50% threshold?

1. All costs taken into account (circuit-level noise, gates, etc.), can 3D codes have an 
advantage compared to 2D codes under biased noise?

Open questions:

3.     Symmetries and weight-reduction can be used to show that Clifford-deformed codes have 
         a 50% threshold



THANKS

3D code visualizer available at: https://gui.quantumcodes.io



PanQEC
QEC made deliciously easy

github.com/panqec

BETA

Interactive tool:  gui.quantumcodes.io



PanQEC

Interactive visualization of 
codes and decoders

Simple & performant simulator

▸ Thresholds computable with 
only a few lines of code
▸ Tools to submit and track jobs 
on the cluster
▸ Analysis and plotting toolbox

▸ Many variants of the 2D and 3D 
surface & color codes
▸ Fractons codes
▸ More codes to come soon… 
(fermionic codes, hypergraph 
product codes, etc.)

Large collection of codes

▸ Interactively insert & decode 
errors on 2D & 3D codes
▸ Helpful to debug code & 
decoders
▸ Useful to test research ideas
▸ Educational tool to learn QEC

BETA

Interactive tool:  gui.quantumcodes.io


